INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA

SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN DEPARTAMENTO DE INGENIERÍA ELÉCTRICA UNIDAD PROFESIONAL "ADOLFO LÓPEZ MATEOS"

TÉCNICA COMPUTACIONAL PARA ESTIMACIÓN DE ESTADO EN REDES DE DISTRIBUCIÓN

TESIS

QUE PARA OBTENER EL GRADO DE

MAESTRO EN CIENCIAS CON ESPECIALIDAD EN INGENIERÍA ELÉCTRICA

P R E S E N T A:

FEDERICO TREJO NIXCOMEL

MEXICO, D.F. 2011

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

ACTA DE REVISIÓN DE TESIS

En la Ciudad de	MÉXICO	siendo las	17:00 hor	as del día	a 0	9 de	l mes de	6
DICIEMBRE del 2011	se reunieron los	miembros de la Cor	nisión Reviso	ra de la T	esis, desi	ignada		
por el Colegio de Profesore	s de Estudios de F	Posgrado e Investiga	ción de la:		E	. S. I. M	.E. ZA	C.
por el colegio de l'ioresole.	da.	obbrado e mitestign						
"TÉCNICA COMPLITA	CIONAL PARA	ESTIMACIÓN D	E ESTADO	EN RED	ES DE L	DISTRI	BUCIÓ	N"
TECHICA COMI UTA	ICIOITAL I AIG	LETIMATORO						
Presentada por el alumno:								
TDE IO		NIXCOMFI			FED	ERICO)	
Apellido paterno		Apellido mater	no		Noi	mbre(s)		
Apendo patento		C	on registro	B 0	9	1 7	2	4
ivente dei		0	on region o. [
aspirante de:				ÉCTRICA				
	MAESIRIAEN	CIENCIAS EN ING		footoron		BADI	A TESP	S en
Después de intercambiar virtud de que satisface lo	opiniones, los i os requisitos señ	alados por las dis	posiciones re	eglament	tarias vie	gentes.	4 TESK	5 , CH
		LA COMISIÓN REV	ISORA					
		Director(a) de t	esis					
		DR LAUSE BOBLES						
	and		Ć	fauid	fome	w		
DR. DANIEL	LGUIN SALINAS		DR. D	AVID RO	etario)MERO		
					By			
DR. RICARDO	OCTAVIO ARTUR	0	DR.	GERMAN	ROSAS C	ORTIZ		
MOTA	PALOMINO			D	2 DE WEI	THE RIA RIA	5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Segu	ndo vocal			Terce	r vocal		ALLE V CLEOP	
	PRESIDEN	TE DEL COLEGIO	DE PROFES	SORES		P. N.	1º	
			CARCIA	PC	SECCION DI DEGRADO I	e estudi I investi	OS DE SACION	
		DR. JAIME ROBLES	GARCIA		-			
DR. DANIEL Dre DR. RICARDO MOTA Segu	ALGUÍN SALINAS sidente OCTAVIO ARTURO PALOMINO ndo vocal PRESIDEN	DR. JAIME ROBLES	DR. D DR. D DE PROFES	GERMAN Terce	VERO RC etario	DMERO	STATUS I STATUS	

SIP-14

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

CARTA CESIÓN DE DERECHOS

En la Ciudad de México, Distrito Federal, el día 9 del mes de diciembre del año 2011, el que suscribe <u>Federico Trejo Nixcomel</u> alumno (a) del Programa de Maestría en Ciencias en Ingeniería Eléctrica con número de registro B091724, adscrito a la Sección de Estudios de Posgrado e Investigación de la ESIME Unidad Zacatenco del IPN, manifiesta que es autor (a) intelectual del presente trabajo de Tesis bajo la dirección del <u>Dr. Jaime Robles García</u> y cede los derechos del trabajo intitulado <u>Técnica Computacional para Estimación de Estado en Redes de Distribución</u>, al Instituto Politécnico Nacional para su difusión, con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director del trabajo. Este puede ser obtenido escribiendo a la siguiente dirección ftrejon0400@ipn.mx y/o jarobles@ipn.mx Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

Federico Trejo Nixcomel

AGRADECIMIENTOS:

A mis padres y hermanos por su apoyo y comprensión, durante mi formación académica.

Al Instituto Politécnico Nacional y a la Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica por permitir mis estudios de Posgrado en Ingeniería Eléctrica, a sus profesores y personal de apoyo por su ayuda durante mi instancia en la sección.

Al Dr. Jaime Robles García por su confianza, apoyo y sugerencias para realizar este trabajo.

A los miembros de la comisión revisora de tesis: Dr. Daniel Olguín Salinas, Dr. David Romero Romero, Dr. Jaime Robles García, Dr. Ricardo O. Mota Palomino, Dr. Germán Rosas Ortiz, M. en C. Gilberto Enríquez Harper, por todos sus comentarios atinados para la mejora de este trabajo.

Al CONACYT, por su apoyo económico recibido para la realización de mis estudios de maestría.

RESUMEN

En los años recientes el interés por analizar los sistemas eléctricos de distribución ha crecido, debido a la necesidad de la automatización, mejora en la operación, el control y las mediciones de estos sistemas, por lo que en las redes de distribución se busca tener una herramienta de estimación de estado.

La estimación de estado es una herramienta fundamental e importante que es conveniente tener para cualquier red eléctrica para conocer su estado de operación ó vector de estado (magnitudes y ángulos nodales), a partir de mediciones. La función principal del estimador de estado es minimizar los errores e inconsistencias que podrían existir en las mediciones. En este proceso la topología de la red y sus parámetros (impedancias de las líneas), son usadas junto con las mediciones para obtener el cálculo del vector estado, buscando que este cálculo sea muy cercano al estado real del sistema.

En este trabajo se presenta el estudio de estimación de estado estático para los sistemas de distribución radial bajo la técnica de mínimos cuadrados ponderados, modificando la metodología por la implementación de las técnicas de barridos progresivos regresivos. Además se desarrolla esto en un programa de computadora usando el compilador FORTRAN 90.

Los resultados obtenidos para la estimación de estado se validan al hacer la comparación con soluciones derivadas del método de flujos de potencia para sistemas de distribución y mediante el paquete computacional DIgSILENT.

En este mismo trabajo se aborda el tema de las mediciones por que juegan un papel muy importante en el estimador de estado, ya que en algunos casos la red de distribución puede ser no observable topológica o numéricamente. Por otro lado disponer de un gran número de mediciones incrementa el costo de la red, por lo tanto determinar el número óptimo de mediciones es un punto de gran importancia en la estimación de estado por que nos permitirá llegar a un vector de estado más preciso y a una red económica en cuanto a su esquema de mediciones.

Un algoritmo para la localización óptima de mediciones es propuesto, basándose en el método de la norma aplicado a la estimación robusta, trabajo que se desarrolló en [36]. Este método es ejemplificado con cuatro sistemas de prueba descritos en la sección correspondiente de este trabajo. Computacionalmente también este método es llevado a cabo.

ABSTRACT

In recent years the interest in analyzing electrical distribution systems has grown, due to the need of automation, improved operation, control and measurements of these systems, so that distribution networks are looking to have a state estimation tool.

The state estimation is a fundamental and important tool which should be taken to any power grid to meet its operating status or state vector (nodal magnitudes and angles), from measurements. The main function of the state estimator is to minimize the errors and inconsistencies that might exist in the measurements. In this process the network topology and its parameters (line impedances) are used along with measurements for the calculation of the state vector, looking for this calculation is very close to the actual state of the system.

This work presents the study of static state estimation for radial distribution systems under the weighted least squares technique, changing the methodology for implementing progressive regressive sweep techniques. In addition, it develops a computer program using Fortran 90 compiler.

The results for state estimation are validated by making comparisons with solutions derived from the power flow method for distribution systems and by DIgSILENT software package.

In this work, addresses the issue of the measurements as they play an important role in the state estimator, since in some cases the distribution network topology may not be observable or numerically. On the other hand have a large number of measurements increases the cost of the network, thus determining the optimal number of measurements is a point of great importance in the estimation of state for allowing us to reach a more accurate state vector and an economic network in their scheme of measurements.

An algorithm for optimal location of measurements is proposed, based on the standard method applied in robust estimation, work developed in [36]. This method is exemplified with four test systems described in the relevant section of this work. Computationally this method is also performed.

CONTENIDO

Ι
II
III
VI
VII
VIII
IX

CAPÍTULO 1

INTRODUCCIÓN.

1.1 Introducción.	1
1.2 Objetivo.	2
1.3 Justificación.	2
1.4 Estado del Arte.	3
1.5 Alcances y Limitaciones.	4
1.6 Aportación.	4
1.7 Estructura de la Tesis.	5

CAPÍTULO 2

ESTIMACIÓN DE ESTADO POR MÍNIMOS CUADRADOS PONDERADOS.

2.1 Introducción.	6
2.2 Problema de Mínimos Cuadrados.	7
2.3 Formulación del Problema.	7
2.4 Error en las Mediciones.	8
2.5 Modelos no Lineales.	9
2.5.1 Método de Gauss-Newton.	10
2.5.2 Método de Newton-Raphson.	10
2.6 Estimación de Estado por Mínimos Cuadrados Ponderados en CA.	12

CAPÍTULO 3

ESTIMACIÓN DE ESTADO EN SISTEMAS ELÉCTRICOS DE DISTRIBUCIÓN.

3.1 Introducción.	14
3.2 Sistemas Eléctricos de Distribución.	15
3.3 Modelado de los Componentes del Sistema Eléctrico de Distribución	16
Usados en el Algoritmo de EERD.	
3.3.1 Líneas y Cargas en Distribución.	16
3.3.2 Mediciones.	18
3.3.2.1 Mediciones Reales.	19
3.3.2.2 Pseudo-Mediciones.	20
3.3.2.3 Datos de Flujos de Potencia.	20
3.3.2.4 Asignación de Carga.	20
3.4 Estimación de Estado en Sistemas de Distribución.	21
3.4.1 Ordenamiento en Estructuras de Niveles.	21
3.4.2 Algoritmo de Estimación de Estado en Sistemas de Distribución.	23
3.4.2.1 Estimación de Estado por Mínimos Cuadrados Ponderados.	23
3.4.3 Estructura y formación del Jacobiano.	29
3.4.4 Formulas para los Elementos del Jacobiano.	31
3.5 Sistemas de Prueba del Algoritmo de EERD.	32
3.5.1 Sistema de Prueba de 11 Nodos.	33
3.5.2 Casos de Estudio 1: Sistema de prueba de 11 Nodos, evaluación	34
del funcionamiento del algoritmo EERD.	
3.5.3 Casos de Estudio 2: Sistema de prueba de 11 Nodos, con cambios	39
de configuración de mediciones y perturbación en estas.	
3.6 Análisis de Resultados.	43

CAPÍTULO 4

LOCALIZACIÓN ÓPTIMA DE LAS MEDICIONES.

4.1 Introducción.	44
4.2 Método de la Norma y Norma Podada.	45
4.2.1 Método de la Norma.	45
4.2.2 Método de la Norma Podada.	46
4.2.3 Norma y Norma Podada Usadas para la Localización Óptima de	46
Mediciones en los Sistemas Eléctricos de Distribución.	
4.3 Sistemas de Prueba del Algoritmo de Localización Óptima de Mediciones.	49
4.3.1 Sistema de Prueba Caso 1.	49
4.3.2 Sistema de Prueba Caso 2. Error Sustancial en una Rama Trifásica.	53
4.3.3 Sistema de Prueba Caso 3. Error Sustancial en una Rama Bifásica.	56
4.3.4 Sistema de Prueba Caso 4. Error Sustancial en una Rama	59
Monofásica.	
4.4 Análisis de Resultados.	62

CAPÍTULO 5

CONCLUSIONES

5.1 Conclusiones.	64
5.2 Trabajos Futuros.	66

REFERENCIAS

APÉNDICE A

EXPRESIONES PARA FORMAR EL JACOBIANO.

A.1 Expresiones para Mediciones de Voltaje.	71
A.2 Expresiones para Mediciones de Flujo de Potencia.	72
A.3 Expresiones para Mediciones de Inyección de Potencia.	74

APÉNDICE B

SISTEMA DE PRUEBA DE 37 NODOS.

76
'

APÉNDICE C

ARCHIVOS DE SALIDA DEL ALGORITMO DE LOCALIZACION ÓPTIMA.

C.1 Archivo de Salida para el Sistema de Prueba Caso 1.	81
C.2 Archivo de Salida para el Sistema de Prueba Caso 2.	84
C.3 Archivo de Salida para el Sistema de Prueba Caso 3.	88
C.4 Archivo de Salida para el Sistema de Prueba Caso 4.	91

APÉNDICE D

CODIGO DEL PROGRAMA EERD Y LOCALIZACION ÓPTIMA.

D.1 Introducción.	95
D.2 Descripción del Programa Fuente.	95
D.3 Descripción de los Archivos de Datos.	101

67

LISTA DE FIGURAS

Figura 2.1. Grafica de la Función de Distribución de Probabilidad $FDP(\eta)$.	9
Figura 3.1. Alimentador de distribución [28].	15
Figura 3.2. Impedancias de un alimentador trifásico [28].	16
Figura 3.3. Modelo de una línea trifásica [28].	18
Figura 3.4. Modelo de la carga trifásica [10].	18
Figura 3.5. Mediciones de entrada a un EERD.	19
Figura 3.6. Alimentador de distribución radial.	22
Figura 3.7. Sistema de distribución dos nodos [17].	23
Figura 3.8. Inyección de potencia equivalente [17].	26
Figura 3.9. Diagrama de Flujo para Estimación de Estado en Sistemas de	28
Distribución.	
Figura 3.10. Sistema Eléctrico de Distribución de 11 Nodos.	33
Figura 3.11. Esquema de Mediciones del Sistema Eléctrico de Distribución de 11	34
Nodos, Caso 1.	
Figura 3.12. Perfiles de Voltaje de las Tres Fases del Sistema Eléctrico de	38
Distribución – Caso 1.	
Figura 3.13. Esquema de Mediciones del Sistema Eléctrico de Distribución de 11	39
Nodos, Caso 2.	
Figura 3.14. Perfiles de Voltaje de las Tres Fases del Sistema Eléctrico de	42
Distribución – Caso 2.	
Figura 4.1. Esquema de Medición para el Sistema Eléctrico de Distribución 11	49
Nodos, Caso Base.	
Figura 4.2. Esquemas de Medición para las 9 Submuestras, Caso 1	52
Figura 4.3. Esquema de Mediciones Óptimas del Sistema de Prueba Caso 1.	53
Figura 4.4. Esquemas de Medición para las 9 Submuestras, Caso 2.	55
Figura 4.5. Esquema de Mediciones Óptimas del Sistema de Prueba Caso 2.	56
Figura 4.6. Esquemas de Medición para las 9 Submuestras, Caso 3.	58
Figura 4.7. Esquema de Mediciones Óptimas del Sistema de Prueba Caso 3.	59
Figura 4.8. Esquemas de Medición para las 9 Submuestras, Caso 4.	61
Figura 4.9. Esquema de Mediciones Óptimas del Sistema de Prueba Caso 4.	62
Figura B.1. Sistema de Prueba de 37 Nodos [33].	76

LISTA DE TABLAS

Tabla 3.1. Ordenamiento de un alimentador de distribución radial.	22
Tabla 3.2. Elementos que forman el Jacobiano.	30
Tabla 3.3. Renombramiento de Número de Nodos para el Sistema Eléctrico de	33
Distribución de 11 Nodos.	
Tabla 3.4. Mediciones para el Sistema Eléctrico de Distribución 11 Nodos, Caso 1	34
Tabla 3.5. Solución de Estimación de Estado para el Caso 1.	35
Tabla 3.6. Error Entre los Vectores de Estado Base y Estimado para el Caso 1.	36
Tabla 3.7. Residuos Entre los Flujos de Potencia Obtenidos a Partir de los Vectores	36
de Estado Base y Estimado para el Caso 1.	
Tabla 3.8. Residuo entre Mediciones para el Caso 1.	37
Tabla 3.9. Mediciones del Sistema Eléctrico de Distribución de 11 Nodos, Caso 2	39
Tabla 3.10. Solución de Estimación de Estado para el Caso 2.	40
Tabla 3.11. Error entre los vectores de estado base y estimado para el caso 2.	41
Tabla 3.12. Residuos Entre Mediciones para el Caso 2.	41
Tabla 4.1. Mediciones para el Sistema Eléctrico de Distribución 11 Nodos, Caso	50
Base.	
Tabla 4.2. Normas para las Submuestras del Sistema de Prueba Caso 1.	52
Tabla 4.3. Normas para las Submuestras del Sistema de Prueba Caso 2.	55
Tabla 4.4. Normas para las Submuestras del Sistema de Prueba Caso 3.	58
Tabla 4.5. Normas para las Submuestras del Sistema de Prueba Caso 4.	61
Tabla A.1. Derivadas en Forma Polar para Voltaje.	71
Tabla A.2. Derivadas en Forma Rectangular para Voltaje.	71
Tabla A.3. Derivadas en Forma Polar para Flujos de Potencia.	72
Tabla A.4. Derivadas en Forma Rectangular para Flujos de Potencia.	73
Tabla A.5. Derivadas en Forma Polar para Inyecciones de Potencia.	74
Tabla A.6. Derivadas en Forma Rectangular para Inyecciones de Potencia.	75
Tabla B.1. Renombramiento de Número de Nodos para el Sistema Eléctrico de	77
Distribución de 37 Nodos.	
Tabla B.2. Mediciones para el Sistema de Prueba de 37 Nodos.	77
Tabla B.3. Solución para el Sistema de 37 Nodos.	78
Tabla B.4. Residuos entre Vectores de Estado, DIgSILENT-EERD para el Sistema de	79
37 Nodos.	

NOMENCLATURA

η	Error en la medición.
z ^{medida}	Valor proporcionado por el aparato de medición.
z ^{real}	Valor real de la cantidad medida por el equipo de medición.
FDP()	Función de densidad de probabilidad.
$[R_z]$	Matriz de covarianzas.
G()	Matiz de Ganancia.
W	Matriz de ponderaciones.
P _L	Potencia Activa en un nodo de carga.
Q_L	Potencia Reactiva en un nodo de carga.
V	Magnitud de voltaje complejo nodal.
Δ	Angulo de fase de voltaje complejo nodal.
Z_{aa}, Z_{bb}, Z_{cc}	Impedancias complejas propias de cada fase.
$\vec{Z}_{ab}, \vec{Z}_{ac}, \vec{Z}_{bc}$	Impedancias complejas mutuas entre conductores.
\vec{Z}_{nn}	Impedancia propia del conductor neutro.
$\vec{Z}_{an}, \vec{Z}_{hn}, \vec{Z}_{cn}$	Impedancias complejas mutuas entre cada fase y neutro.
\vec{V}_a	Voltaje complejo nodal de la fase a, en el nodo de envío <i>i</i> .
\vec{V}_{h}	Voltaje complejo nodal de la fase b, en el nodo de envío <i>i</i> .
\vec{V}_c	Voltaje complejo nodal de la fase c, en el nodo de envío <i>i</i> .
\vec{V}_{a}'	Voltaje complejo nodal de la fase a, en el nodo de recepción <i>j</i> .
$\vec{V}_{h}^{''}$	Voltaje complejo nodal de la fase b, en el nodo de recepción <i>j</i> .
\vec{V}_{c}'	Voltaje complejo nodal de la fase c, en el nodo de recepción <i>j</i> .
\vec{V}	Voltaje complejo nodal del neutro, en el nodo de envío <i>i</i> .
\vec{V}'_n	Voltaje complejo nodal del neutro, en el nodo de envío <i>j</i> .
I_a, I_b, I_c	Corrientes de línea para la fase "a", "b" y "c".
$[Z_{abc}]$	Matriz de impedancia de fase.
p	Fase "a", "b" o "c".
S_{caraa}^{p}	Potencia compleja de carga para la fase "a", "b" o "c".
V_p	Voltaje complejo nodal de carga en la fase "a", "b" o "c".
I_n^*	Corriente compleja conjugada de la carga en la fase "a", "b" o "c".
σ	Desviación estándar.
μ_{zi}	Valor medio.
σ_{zi}	Desviación estándar para una medición de un estudio de flujo de potencia.
<i>z</i> _t	Valor real de la medición de un estudio de flujo de potencia.
[Z]	Vector de mediciones.
ez	Error en las mediciones.
$N(0, R_z)$	Distribución normal con media 0 y varianza σ^2
h()	Funciones que relacionan variables de estado con mediciones.
σ^2	Varianza.
minJ(X,Y)	Minimo de una función.
[H]	Jacobiano de mediciones

S _{equ-ij}	Inyección de potencia equivalente.
M	Conjunto de mediciones.
т	Número de ramas del sistema.
$\varepsilon_{0_m}^{a,b,c}$	Flujos de potencia de la muestra base de la rama $1 \dots m$, para las fases a, b ó c.
$\varepsilon^{a,b,c}_{S_m}$	Flujos de potencia de la submuestra de la rama $1 \dots m$, para las fases a, b ó c.
$r_{S_m}^{a,b,c}$	Residuo de la submuestra de la rama $1 \dots m$, para las fases a, b ó c.
k	Número de submuestras.
$r_{k_m}^a$	Residuo para la fase "a" de la submuestra $1 \dots k$, y de la rama $1 \dots m$.
M_r^a	Matriz de residuos para la fase "a".
$r_{k_m}^b$	Residuo para la fase "b" de la submuestra $1 \dots k$, y de la rama $1 \dots m$.
M_r^b	Matriz de residuos para la fase "b".
$r_{k_m}^c$	Residuo para la fase "c" de la submuestra $1 \dots k$, y de la rama $1 \dots m$.
M_r^c	Matriz de residuos para la fase "c".
j	Número de columnas de la matriz de residuos.
$\ c_j^a\ $	Norma euclidiana de la columna 1 <i>j</i> , para la fase "a".
$v^{a}_{\parallel .\parallel}$	Vector de normas para la fase "a".
$v^b_{\parallel,\parallel}$	Vector de normas para la fase "b".
$v_{\parallel,\parallel}^{c}$	Vector de normas para la fase "c".
$n.m^a$	Norma mínima de la fase "a".
$n.m^b$	Norma mínima de la fase "b".
$n.m^c$	Norma mínima de la fase "c"
$\{Z\}_{\acute{o}ptimo}$	Conjunto óptimo de mediciones.

ABREVIATURAS

BFS: Recorrido de bus búsqueda profunda (Breadth first-search).

DFS: Recorrido de bus búsqueda amplia (Depth first-search).

CA: Corriente Alterna.

EERD: Estimación de Estado en Redes de Distribución.

EMS: Sistema de Medición de Energía (Energy Management System).

SCADA: Sistema de Supervisión, Control y Adquisición de Datos (*Supervisory Control and Data Adquisition*).

SED: Sistema Eléctrico de Distribución.

SEP's: Sistemas Eléctricos de Potencia.

n.*m* : Número de mediciones.

n.v.e: Número de variables de estado.

CAPÍTULO 1

INTRODUCCIÓN.

1.1 Introducción.

Los sistemas de potencia están compuestos de sistemas de generación, transmisión, subtransmisión y distribución, las condiciones de operación y control de un sistema de potencia en un punto y tiempo dado puede ser determinado si el modelo de la red y los voltajes complejos en cada nodo del sistema son conocidos [1].

Una manera de obtener los voltajes complejos nodales es mediante las técnicas de estimación de estado, que han sido desarrolladas y aplicadas desde los años setentas aproximadamente, fundamentalmente a nivel de transmisión.

La estimación de estado de una red de energía eléctrica se realiza con mediciones no exactas en la red, pero con un grado de redundancia. Debido al error en las mediciones no se pueden conocer los valores reales de los voltajes complejos nodales, por lo que solo es posible obtener una estimación de su valor, esta estimación se busca que sea lo más próximo posible al valor verdadero [1].

Por otro lado usualmente se analiza la estimación de estado como un problema estático y no en tiempo real, por lo tanto todas las mediciones son tomadas en un instante como una fotografía del la red.

En este trabajo se tiene el interés de aplicar una técnica de estimación de estado a nivel distribución con las modificaciones necesarias ya que no es viable manejar la metodología tal y como se hace para los sistemas eléctricos de potencia por las diferentes características que presentan las redes de distribución, principalmente que estas redes se manejan de forma trifásica y desbalanceada.

Las mediciones juegan un papel muy importante en la estimación de estado debido a esto también en este trabajo se aborda este tema, buscando un conjunto de mediciones óptimo derivado de subsistemas seleccionados aleatoriamente, a partir de un sistema base sobredeterminado. Esto se explicará en el capítulo correspondiente de la tesis.

1.2 Objetivo.

Aplicar la metodología de estimación de estado estáticamente en redes de distribución radial, utilizando la técnica de mínimos cuadrados ponderados. Además indicar las mediciones óptimas para mejorar los resultados estimados y desarrollar una herramienta computacional aplicando estas técnicas.

1.3 Justificación.

En el pasado la mayoría de los Sistemas Eléctricos de Distribución (SED), no eran de interés de estudio ni monitoreados, tenían más importancia los Sistemas Eléctricos de Potencia (SEP's), por lo tanto no se requería de un estimador de estado o programa de flujos de carga para el análisis de los SED, siendo estos los estudios más comunes dentro del análisis de las redes eléctricas.

Sin embargo en los años recientes, varias técnicas con resultados eficientes se han propuesto para obtener la solución de flujos de carga en los SED, estas técnicas se pueden revisar en las referencias [2-4].

De igual forma para la estimación de estado, recientemente se han hecho estudios para estas redes, todo esto por el interés que se les ha dado a estos sistemas por diferentes razones como la incursión de la generación distribuida y la presencia de la tecnología con equipos; como el Sistema de Supervisión, Control y Adquisición de Datos (SCADA) o Sistema de Medición de Energía (EMS) principalmente, además de la inminente automatización de estos sistemas, por lo tanto es conveniente que se determinen los voltajes complejos nodales para mejorar el análisis convencional de un SED.

Para determinar los voltajes complejos nodales en un SED mediante la herramienta de estimación de estado, se hará de forma trifásica a diferencia del análisis monofásico que se realiza en los SEP's. Sin embargo para llegar al vector de estado o voltajes complejos nodales en forma trifásica los únicos datos requeridos para la ejecución del estimador de estado son las impedancias de las líneas y mediciones, en contraste con las técnicas de flujos de carga que se involucran con el modelado de todos los elementos existentes en los SED.

La estimación de estado que se plantea en este trabajo es de forma estática ya que en la mayoría de las redes de distribución hay muy poca información disponible en tiempo real para monitorear el sistema; el voltaje y la potencia inyectada al alimentador de distribución en la subestación son usualmente las únicas mediciones en tiempo real disponible, siendo esto una de las razones del por qué abordar el estimador de estado en forma estática.

1.4 Estado del Arte.

La idea de la estimación de estado aplicando el criterio de mínimos cuadrados ha sido conocida y aplicada a finales del siglo XIX. El mayor desarrollo en esta área se llevo a cabo durante el siglo XX en aplicaciones en el campo aeroespacial [5].

Durante este desarrollo, los problemas estaban involucrados con la localización de vehículos aeroespaciales (misiles o vehículos espaciales), en donde la determinación de su trayectoria era mejorada por medio de la estimación de estado, debido a que la medición de su posición y velocidad era imperfecta [5].

En muchas aplicaciones estas mediciones se basaban principalmente en observaciones ópticas y señales de radar que podían estar contaminadas de ruido y provocar errores en el sistema de medición [5].

Sin embargo la estimación de estado aplicada a los SEP's se da alrededor de los años setentas por medio de Fred C. Schweppe [6]. Por otro lado trabajos relacionados con la estimación de estado pero empleada en sistemas de distribución siendo el tema de interés en esta tesis, se tienen referencias por la década de los noventa.

Algunos de estos trabajos se encuentran en la referencias [7-13], teniendo en común la solución de la estimación de estado para sistemas de distribución mediante mínimos cuadrados ponderados, muy similar a como se hace en los sistemas de potencia con la excepción del uso de modelos trifásicos a fin de observar el desbalance que existe en estos sistemas, llevando al manejo de matrices dispersas y de gran tamaño.

Por otra parte en [7], también se revisa el problema del impacto de las mediciones en la calidad de la estimación de estado, involucrando aspectos relacionados con la calidad, localización y errores en las mediciones y se concluye que la calidad de la estimación de estado se ve afectada por estos aspectos.

En [14], se encuentra un estado del arte que discute acerca de cambios en el estimador de estado en sistemas de distribución, debido a las características de estos sistemas como por ejemplo se habla sobre los alimentadores que en su mayoría son radiales con laterales monofásicos, bifásicos o trifásicos, además son secciones de línea cortas sin transposición, se mencionan los diferentes tipos de cargas que se tienen refiriéndose a la naturaleza de desbalance que presentan estos sistemas, también se mencionan los tipos de mediciones y la escases de estas, provocando la incursión de pesudo-mediciones.

En [15], se concluye que el método de mínimos cuadrados ponderados empleado como solución para la estimación de estado en sistemas de distribución trabaja mejor en comparación a otros métodos con los que fue evaluado, también las cargas son manejadas como pseudo-mediciones debido a la falta de mediciones. Por otro lado en [16] se explica como modelar la carga como pseudo-medicion para obtener una mejor eficacia en la estimación de estado.

En [17], se resuelve la estimación de estado mediante mínimos cuadrados ponderados sin manejar matrices dispersas ni de gran tamaño ya que se usan técnicas de barridos progresivos regresivos, método con eficientes resultados que se toma como base para la realización de esta tesis.

En las referencias más actuales [18-23], se comienza a abordar el tema de la estimación de estado en tiempo real, esto para sistemas de distribución modernos, completamente monitoreados.

1.5 Alcances y Limitaciones.

El algoritmo de Estimación de Estado en Redes de Distribución (EERD) desarrollado en esta tesis está limitado a sistemas de distribución radial, sin embargo pueden ser de n número de nodos. Los reguladores de voltaje y transformadores como elementos del SED no se modelan en este trabajo. El análisis de observabilidad e identificación de mediciones erróneas no se trabaja en esta tesis ya que se obtienen los voltajes complejos nodales.

La localización óptima de mediciones puede ser también planteada a un estimador de estado en sistemas eléctricos de potencia, la limitante para esto es la escases de mediciones que se llegara a tener en el sistema que se esté analizando por qué no se podría hacer la elección de subsistemas aleatorios de cero grados de libertad.

1.6 Aportación.

Se desarrolló una herramienta computacional en FORTRAN 90, para solucionar la estimación de estado en sistemas de distribución radiales, utilizando el método de mínimos cuadrados ponderados, con la diferencia a la estimación de estado convencional en redes eléctricas en que se emplearon las técnicas de barridos progresivos regresivos.

La herramienta computacional también presenta un algoritmo propuesto acerca de la localización óptima de mediciones, indicando que conjunto de mediciones resulta ser el óptimo, que mejora los cálculos del vector de estado.

1.7 Estructura de la Tesis.

El presente trabajo se encuentra estructurado de cinco capítulos. En el capítulo uno se presenta el objetivo, justificación, estado del arte, alcances y limitaciones así como la aportación del trabajo.

En el segundo capítulo brevemente se hace una descripción teórica acerca de lo que es el algoritmo de estimación de estado, el planteamiento y la formulación para dar solución a este problema por medio del método de mínimos cuadrados ponderados. Por otro lado también se tiene una pequeña introducción sobre la forma en que la estimación de estado se plantea a sistemas eléctricos de Corriente Alterna (CA).

El capítulo tres presenta el desarrollo de la estimación de estado en sistemas eléctricos de distribución radiales, partiendo de una breve introducción a lo que es un SED, pasando al modelado de líneas y cargas ya que son componentes del SED a ser usados en el algoritmo de EERD, así mismo se habla sobre el modelo y tipo de mediciones a utilizar, posteriormente se desarrolla la explicación sobre el método de estimación de estado mediante mínimos cuadrados ponderados, finalizando con un sistema de prueba y dos casos de estudio, analizando los resultados derivados.

En el capítulo cuarto se describe la metodología de localización óptima de las mediciones propuesta, aplicando esto a un sistema de prueba con cuatro casos de estudio y los resultados obtenidos son discutidos.

En el capítulo quinto se expresan las conclusiones más importantes y observaciones sobre esta tesis, también se hacen recomendaciones para la realización de trabajos futuros.

El Apéndice A presenta las expresiones para formar el Jacobiano de mediciones, refiriéndonos a las derivadas parciales de las mediciones con respecto a las variables de estado, esto en forma polar y rectangular.

El Apéndice B contiene el sistema de prueba de 37 nodos, al cual se le aplicó el algoritmo EERD, obteniendo sus resultados correspondientes.

En el Apéndice C se muestran parte del archivo de salida obtenido con el algoritmo computacional que se desarrolló para la parte de localización óptima de mediciones para todos los casos de estudio del capítulo cuatro.

Por último el Apéndice D muestra parte del código computacional desarrollado con una breve explicación de cómo va funcionando, así mismo se muestran partes de las subrutinas.

CAPÍTULO 2

ESTIMACIÓN DE ESTADO POR MÍNIMOS CUADRADOS PONDERADOS.

2.1 Introducción.

Estimación de estado es el proceso de asignar un valor a un sistema desconocido de variables de estado basado en mediciones del sistema, además las cantidades medidas son a su vez funciones de otras variables que se desea estimar.

La estimación estadística se refiere al procedimiento basado en el uso de muestras utilizadas para calcular el valor de uno o más estados o parámetros desconocidos en un sistema dado. Cuando las muestras son inexactas, la estimación obtenida para el parámetro desconocido es también inexacta [5].

Esto conduce al problema de obtener una mejor estimación de los parámetros desconocidos, dadas las mediciones o muestras disponibles de un sistema para el cual se desea conocer sus condiciones de operación.

El método que más comúnmente se utiliza para resolver la estimación de estado, es el de mínimos cuadrados ponderados, el termino mínimos cuadrados describe el problema muy frecuente de resolver sistemas de ecuaciones lineales sobredeterminados, esto es, sistemas lineales con mas ecuaciones que incógnitas. En tal caso en lugar de resolver las ecuaciones de manera exacta, habitualmente no existe tal solución, solo se busca minimizar la suma de los cuadrados de los residuos, en otras palabras este método tiene la función de minimizar la suma de los residuos de las mediciones elevadas al cuadrado [24].

En este capítulo de forma general se plantea y formula el problema de mínimos cuadrados, y los métodos para solucionar este planteamiento. Posteriormente se da una introducción a la estimación de estado en un sistema eléctrico de corriente alterna, teniendo como objetivo el de estimar los voltajes complejos en todos los nodos del sistema analizado.

2.2 Problema de Mínimos Cuadrados [25].

La solución de mínimos cuadrados provee una manera de resolver sistemas (sobre determinados) de ecuaciones lineales (sistemas con más ecuaciones que incógnitas) del tipo:

$$Ax = b \tag{2.1}$$

Donde x y b son vectores de n (columnas) por m (filas), respectivamente, siendo n < m. A es una matriz de $m \ge n$.

2.3 Formulación del Problema [25].

El problema de mínimos cuadrados para sistemas (sobredeterminados), ecuación (2.1) es encontrar el vector x para J(x), definida en base a la definición de mínimos cuadrados planteada en la introducción, que se expresa mediante la ecuación (2.2).

$$J(x) = \frac{1}{2}(b - Ax)'(b - Ax)$$
(2.2)

que es minimizada. El vector residuo está definido como:

$$r = b - Ax \tag{2.3}$$

Por lo tanto la solución de mínimos cuadrados \hat{x} está dada por:

$$J(\hat{x}) = \min_{\mathbf{x}} r' r \tag{2.4}$$

El indicador de desempeño J(x) puede ser diferenciado para obtener las condiciones de optimalidad de primer orden.

$$\frac{\partial J(x)}{\partial x}|_{x=\hat{x}} = A'A\hat{x} - A'b = 0$$
(2.5)

Esto produce la ecuación normal.

$$A'A\hat{x} = A'b \tag{2.6}$$

Resolviendo esta ecuación para \hat{x} se obtiene:

$$\hat{x} = (A'A)^{-1}A'b \tag{2.7}$$

Donde \hat{x} es el estimador de estado.

La matriz de ganancia G y la pseudo-inversa de A, están definidas como;

$$G = A'A$$
(2.8)
$$A' = (A'A)^{-1}A'$$

2.4 Error en las Mediciones [24].

Simulaciones por computadora tales como estudios de flujos de potencia permiten suponer soluciones exactas, pero en la realidad nunca se conoce realmente el estado del sistema. Cuando se tienen muestras o mediciones de un sistema dado, inevitablemente se involucra algún ruido en forma aleatoria dentro del proceso de medición, lo cual distorsiona en menor o mayor grado los resultados. Sin embargo, repetidas medicines de una misma cantidad bajo condiciones controladas cuidadosamente revelan ciertas cantidades estadísticas desde las cuales el valor real puede ser estimado.

El valor obtenido por un aparato de medición presenta el valor medido, el cual difiere del valor real por un error desconocido, matemáticamente esto se modela como sigue:

$$z^{medida} = z^{real} + \eta \tag{2.9}$$

El valor η modela el error del aparato de medición. Si el error en la medición es imparcial la función de densidad de probabilidad de η usualmente se considera como una distribución normal. La función de probabilidad de η es [1].

$$FDP(\eta) = \frac{1}{\sigma\sqrt{2\pi}} e^{\left(-\frac{\eta^2}{2\sigma^2}\right)}$$
(2.10)

La Figura 2.1, muestra la grafica de la $FDP(\eta)$, donde σ proporciona una manera de modelar el error en la medición. Si σ es grande, la medición es normalmente inexacta (aparato de medición de mala calidad), mientras que un valor pequeño denota una medición obtenida con un aparato de medición de alta calidad.

Figura 2.1. Grafica de la Función de Distribución de Probabilidad $FDP(\eta)$.

2.5 Modelos no Lineales [26].

Considerando el siguiente modelo de mediciones no lineal

$$z = h(x) + e \tag{2.11}$$

Donde:

- z: vector de mediciones de dimensión m,
- *x* : vector de estado de dimensión *n*, donde n < m,

h(.): vector de la función no lineal que relaciona las mediciones con el vector de estado.

e : vector de error de mediciones de dimensión m,

m,*n* : número de mediciones y variables de estado respectivamente.

Los elementos de e se asume que tienen media cero; por lo que la correspondiente matriz de varianza está dada por R_z .

El problema de estimación de estado puede ser formulado como la minimización de:

$$J(x) = \frac{1}{2}(z - h(x))'R_z^{-1}(z - h(x))$$
(2.12)

El estimador de estado \hat{x} se obtiene por el siguiente procedimiento iterativo:

$$G(x^k)\Delta x^k = -g(x^k)$$

$$x^{k+1} = x^k + \Delta x^k$$
(2.13)

donde g(x) es el gradiente de J(x), y G(x) es la matriz de ganancia que depende del método usado para resolver el problema de minimización (Gauss-Newton o Newton-Raphson).

2.5.1 Método de Gauss-Newton [25].

La expansión de la serie de Taylor provee una aproximación de la función vectorial no lineal h(x):

$$h(x + \Delta x) \cong h(x) + H(x)\Delta x \tag{2.14}$$

El problema de minimización de la ecuación (2.12) puede rescribirse como sigue:

$$J(\Delta x) = (\Delta z - H(x)\Delta x)' R_z^{-1} (\Delta z - H(x)\Delta x)$$
(2.15)

Donde $\Delta z = z - h(x)$ y $H(x) = \frac{\partial h}{\partial x}$ (matriz Jacobiana). La condición de optimalidad de primer orden es:

$$\frac{\partial J(\Delta x)}{\partial \Delta x} = -H'(x)R_z^{-1}(\Delta z - H(x)\Delta x) = 0$$
(2.16)

Por lo tanto, la solución de mínimos cuadrados lineal puede ser expresada de la forma siguiente:

$$\Delta x = \left(H'(x)R_z^{-1}H(x)\right)^{-1}H'(x)R_z^{-1}\Delta z(x)$$
(2.17)

2.5.2 Método de Newton-Raphson [25].

La derivación del método de Gauss-Newton involucra la transformación del problema de minimización original en un problema de mínimos cuadrados lineal por medio de la linealización de la función vectorial h(x). Para el método de Newton-Raphson, sin embargo, las condiciones de optimalidad son aplicadas directamente al desempeño de J(x) como se expresa en la ecuación (2.12).

Primero, rescribimos J(x) como;

$$J(x) = \frac{1}{2} \sum_{j=1}^{m} \left(\frac{z_j - h_j(x)}{\sigma_j} \right)^2$$
(2.18)

donde σ_j es el elemento (j, j) de la matriz de covarianza, R_z . La condición de optimalidad de primer orden para este modelo es;

$$g(x) = \frac{\partial J(x)}{\partial x} = -\sum_{j=1}^{m} \left(\frac{z_j - h_j(x)}{\sigma_j} \right) \frac{\partial h_j(x)}{\partial x} = 0$$
(2.19)

donde g(x) denota el gradiente de J(x). La raíz de la ecuación no lineal g(x)=0 puede encontrarse usando el método de Newton-Raphson. La expansión de Taylor aproxima la función gradiente:

$$bfg(x + \Delta x) \cong g(x) + G(x)\Delta x$$
 (2.20)

donde G(x) es la matriz Jacobiana de g(x) (o la matriz Hessiana de J(x)):

$$G(x) = \frac{\partial g(x)}{\partial x} = \frac{\partial^2 J(x)}{\partial x^2} = \sum_{j=1}^m \sigma_j^{-1} \frac{\partial h_j(x)}{\partial x} \left(\frac{\partial h_j(x)}{\partial x}\right)' - \sum_{j=1}^m \sigma_j^{-1} \Delta z \frac{\partial^2 h_j(x)}{\partial x^2}$$
(2.21)

La solución de mínimos cuadrados puede expresarse como:

$$\Delta x = G^{-1}(x)H'(x)R_z^{-1}\Delta z(x)$$
(2.22)

Así, entonces

$$\sum_{j=1}^{m} \sigma_j^{-1} \frac{\partial h_j(x)}{\partial x} \left(\frac{\partial h_j(x)}{\partial x} \right)' = H'(x) R_z^{-1} H(x)$$
(2.23)

La corrección del vector de estado puede escribirse de la manera siguiente:

$$\Delta x = \left(H'(x) R_z^{-1} H(x) - \sum_{j=1}^m \sigma_j^{-1} \Delta z \frac{\partial^2 h_j(x)}{\partial x^2} \right)^{-1} H'(x) R_z^{-1} \Delta z(x)$$
(2.24)

11

Nótese que si no se considera el término de la segunda derivada en la ecuación (2.24) se reduce a la ecuación (2.17). Por supuesto, la segunda derivada aparece sólo en modelos no lineales. Inclusive en estos casos su efecto en la convergencia en la estimación de estado dependerá de que tan bien el modelo propuesto se ajuste a los datos, depende de que tanto Δz se aproxime a cero. En la mayoría de los casos, el impacto de la segunda derivada en la estimación de estado en sistemas eléctricos estáticos es insignificante.

2.6 Estimación de Estado por Mínimos Cuadrados Ponderados en CA [25].

El estimador de estado para CA está basado en un modelo de mediciones no lineal de la ecuación (2.11), y de igual forma las condiciones de optimalidad son aplicadas al desempeño de J(x), la cual es expresada por la ecuación (2.18), de la cual J(x) es el residuo de las mediciones. De la ecuación (2.11) se busca encontrar la mejor estimación del vector de estado \hat{x} del sistema, la cual consiste en resolver el problema de mínimos cuadrados ponderados, es decir, minimizar la suma de los residuos de las medidas elevadas al cuadrado, cuya función objetivo se puede rescribir como:

$$J(x) = [z - h(x)]W[z - h(x)]$$

= $\sum_{j=1}^{m} \frac{[z_j - h_j(x)]^2}{\sigma_j^2}$ (2.15)

La ecuación anterior también se puede reescribir como

$$min_{x}J(x) = \sum_{j=1}^{m} \frac{\left[z_{j} - h_{j}(x)\right]^{2}}{\sigma_{j}^{2}}$$
(2.16)

Siguiendo el procedimiento mostrado en la sección 2.4.2 para dar solución a la ecuación (2.16), por medio del método de Newton-Raphson y además ignorado la segunda derivada, la matriz de ganancia queda como sigue:

$$G(x) = H'(x)R_z^{-1}H(x)$$
(2.17)

donde

$$[R] = \begin{bmatrix} \sigma_1^2 & 0 & 0 & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n^2 \end{bmatrix}$$

siendo:

 σ_i^2 = La varianza del error en las mediciones.

La varianza σ_i^2 proporciona la precisión de una medición en particular. Una varianza grande indica que la medición correspondiente no es muy precisa, por lo que es conveniente tener varianzas pequeñas en las mediciones.

La ecuación (2.17) también se puede escribir de la siguiente manera

$$G(x) = H'(x)W_zH(x)$$
 (2.18)

Donde

$$W = R^{-1} = \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 & 0 & 0\\ 0 & \frac{1}{\sigma_2^2} & 0 & 0\\ 0 & 0 & \ddots & 0\\ 0 & 0 & 0 & \frac{1}{\sigma_n^2} \end{bmatrix}$$

Se trata de encontrar el valor de \hat{x} , como ocurre con el problema de flujos de cargas, la forma más eficaz de resolver este problema es mediante el método de Newton-Raphson. El estimador de estado \hat{x} se obtiene por el siguiente procedimiento iterativo:

$$\begin{pmatrix} H'(x^k)W_zH(x^k) \end{pmatrix} \Delta \widehat{x^k} = H'(x^k)W_z\Delta z(x^k)$$

$$\widehat{x^{k+1}} = \widehat{x^k} + \Delta \widehat{x^k}$$

$$(2.19)$$

Donde H(x) es la matriz Jacobiana de g(x).

CAPÍTULO 3

ESTIMACIÓN DE ESTADO EN SISTEMAS ELÉCTRICOS DE DISTRIBUCIÓN.

3.1 Introducción.

Hacer un análisis en las redes eléctricas de distribución implica desarrollar los estudios de flujos de potencia, cortocircuitos, estimación de estado o regímenes transitorios, siendo estos estudios los más comunes, sin embargo no se tienen fuertemente establecidas las metodologías para estos estudios como se tiene en los sistemas eléctricos de potencia, debido a la complejidad que presentan estas redes de distribución.

Esta complejidad implica que se puede tener en ciertos nodos de la red cambios en su configuración de línea, cambios de líneas trifásicas a bifásicas o monofásicas y por otro lado el constante crecimiento de la red y aumento de la demanda en cualquier momento.

Todos estos cambios alteran el estado de la red por lo que para tener una correcta operación del sistema de distribución desde un centro de control es conveniente implementar los estudios antes mencionados como se hace para los sistemas eléctricos de potencia, con modificaciones en sus metodologías.

La estimación de estado en redes eléctricas es una herramienta que dará como resultado una estimación del estado de operación de la red (magnitudes y ángulos nodales). Dos tipos de datos se requieren para un estimador de estado, datos de la red y mediciones [8], sin embargo en las redes de distribución existe el problema para adquirir las mediciones ya que se tienen muy pocos instrumentos de medición conectados en la red que proporcionen estos datos, por lo que las pseudo-mediciones, los resultados de estudios de flujos de potencia o la asignación de carga se utilizaran como mediciones.

Para resolver el problema de estimación de estado en sistemas de distribución se usará el algoritmo de mínimos cuadrados ponderados, ya que resulta ser lo más viable que da una eficiente y confiable solución debido a lo revisado en [15].

El método de Newton se utiliza para resolver mínimos cuadrados ponderados en el cual se forman una matriz Jacobiana y de Ganancia que son calculadas durante cada iteración, varios autores en sus trabajos [7-10], manejan estas matrices dispersas y de gran tamaño

formadas debido a la naturaleza radial y multifase del alimentador de distribución, el manejar estas matrices de gran tamaño hace que aumente la complejidad del problema e implica el uso de técnicas de empaquetamiento de matrices y probablemente fallas de convergencia durante la solución [27]. El estimador de estado para redes de distribución presentado en este trabajo utiliza la técnica de barrido progresivo regresivo, que se usa en el estudio de flujos de potencia mostrado en [4], describiendo esto a lo largo de este capítulo.

3.2 Sistemas Eléctricos de Distribución.

Un sistema eléctrico de distribución típicamente empieza con la subestación de distribución que está alimentada por una o más líneas de subtransmisión. Cada subestación de distribución servirá a uno o más alimentadores primarios, en su mayoría estos alimentadores son radiales, lo que significa que hay solo un camino para el flujo de potencia de la subestación de distribución al usuario. Entre los componentes más comunes que forman un alimentador radial son: un alimentador principal primario trifásico, laterales trifásicos, bifásicos o monofásicos, reguladores de voltaje tipo de pasos, transformadores de línea, banco de capacitores en derivación, transformadores de distribución y cargas trifásicas, bifásicas o monofásicas [28]. La Figura 3.1 muestra un diagrama unifilar mostrando los componentes principales de un sistema de distribución.

Figura 3.1. Alimentador de distribución [28].

Para desarrollar estudios de flujos de potencia y de corto circuito de manera certera los componentes del sistema eléctrico de distribución deberán modelarse usando modelos trifásicos, tales modelos se describen y se pueden encontrar en las referencias [7-8], [28], sin embargo para el estudio de estimación de estado, los componentes y modelos utilizados son los que se describen a continuación.

3.3 Modelado de los Componentes del Sistema Eléctrico de Distribución Usados en el Algoritmo de EERD.

Para desarrollar la estimación de estado básicamente requerimos de datos obtenidos del sistema de distribución, el cual está formado en su mayoría por líneas y cargas de los cuales se usarán sus modelos trifásicos. Entre otros datos a utilizar son el conjunto de mediciones que se tengan así como la configuración topológica de la red.

3.3.1 Líneas y Cargas en Distribución.

En un sistema eléctrico de distribución se puede tener líneas aéreas o subterráneas usualmente cortas y sin secciones transpuestas de una, dos o tres fases que serán modeladas de forma trifásica para determinar su impedancia serie que consiste en la resistencia de los conductores y de las reactancias inductivas propias y mutuas resultantes de los campos magnéticos que rodean a los conductores [28]. La Figura 3.2 ilustra un segmento de línea aérea con cuatro conductores con neutro aterrizado que describe lo antes mencionado.

Figura 3.2. Impedancias de un alimentador trifásico [28].

De la figura 3.2

 $\vec{Z}_{aa}, \vec{Z}_{bb}, \vec{Z}_{cc}$ = Impedancias complejas propias de cada fase. = Impedancias complejas mutuas entre conductores. $\vec{Z}_{ab}, \vec{Z}_{ac}, \vec{Z}_{bc}$ = Impedancia propia del conductor neutro. Žnn $\vec{Z}_{an}, \vec{Z}_{bn}, \vec{Z}_{cn}$ = Impedancias complejas mutuas entre cada fase y neutro. = Voltaje complejo nodal de la fase a, en el nodo de envío *i*. \vec{V}_a \vec{V}_h = Voltaje complejo nodal de la fase b, en el nodo de envío *i*. \vec{V}_c = Voltaje complejo nodal de la fase c, en el nodo de envío i. \vec{V}_a' = Voltaje complejo nodal de la fase a, en el nodo de recepción j. \vec{V}_b' = Voltaje complejo nodal de la fase b, en el nodo de recepción j. \vec{V}_c' = Voltaje complejo nodal de la fase c, en el nodo de recepción j. \vec{V}_n \vec{V}'_n = Voltaje complejo nodal del neutro, en el nodo de envío *i*. = Voltaje complejo nodal del neutro, en el nodo de envío j. = Corrientes de línea para la fase "a", "b" y "c" I_a, I_b, I_c

Las ecuaciones modificadas de J.R Carson son usadas para calcular las impedancias primitivas propias y mutuas para líneas aéreas y subterráneas. Un segmento de línea de distribución aérea de cuatro conductores en estrella aterrizada como el de la Figura 3.2 resultará en una matriz de 4x4. Para un segmento de línea subterránea en estrella que consiste de tres cables con neutro concéntrico, la matriz resultante será de 6x6 [28].

Para la mayoría de las aplicaciones la matriz de impedancias primitiva necesita reducirse a una forma matricial de 3x3 en el "marco de referencia de fase", consistente de las impedancias equivalentes propias y mutas para las tres fases. El método estándar, reducción de Kron, es utilizado para calcular las impedancias de circuitos con neutro y retorno por tierra [28]. El efecto capacitivo de la línea es ignorado ya que resulta relativamente insignificante en los niveles de voltaje del sistema de distribución. El resultado final de la reducción de Kron resulta en la matriz de impedancia de fase de la forma siguiente:

$$[Z_{abc}] = \begin{bmatrix} \vec{z}_{aa} & \vec{z}_{ab} & \vec{z}_{ac} \\ \vec{z}_{ba} & \vec{z}_{bb} & \vec{z}_{bc} \\ \vec{z}_{ca} & \vec{z}_{cb} & \vec{z}_{cc} \end{bmatrix} \Omega /_{km}$$
(3.1)

Esta matriz será simétrica, sin embargo para líneas con dos o una fase aplicando las ecuaciones Modificadas de Carson, nos llevará a matrices primitivas que posteriormente se reducirán mediante la reducción de Kron, estas matrices pueden expandirse a matrices de 3x3 en el "marco de referencia de fase" sumando filas y columnas que consisten en elementos cero para las fases inexistentes [28]. Por ejemplo para una línea bifásica con fases a-b y una línea monofásica con fase c las matrices de impedancia correspondientes serán:

$$[Z_{abc}] = \begin{bmatrix} \vec{z}_{aa} & \vec{z}_{ab} & 0\\ \vec{z}_{ba} & \vec{z}_{bb} & 0\\ 0 & 0 & 0 \end{bmatrix} \Omega /_{km}$$
(3.2)

$$[Z_{abc}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \vec{z}_{cc} \end{bmatrix} \Omega / km$$
(3.3)

Considerando el espaciamiento entre conductores, el efecto de acoplamientos mutuos entre conductores y mediante la aplicación de las Ecuaciones Modificadas de Carson y de Kron se obtiene la matriz en el marco de referencia de fases que conduce al modelo más preciso del segmento de una línea [28]. La Figura 3.3 muestra el modelo de una línea trifásica.

Figura 3.3. Modelo de una línea trifásica [28].

En lo que corresponde al modelado de cargas estas se modelan como potencia constante asumiendo que todas están aterrizadas, ya sean monofásicas, bifásicas o trifásicas [10]. Estas cargas se representan como se muestra en la Figura 3.4.

Figura 3.4. Modelo de la carga trifásica [10].

La relación entre la carga por fase y la corriente es:

$$S_{carga}^{p} = V_{p}I_{p}^{*} \qquad p = a, b, c \qquad (3.4)$$

3.3.2 Mediciones.

Los tipos de mediciones que normalmente se utilizan en un algoritmo de estimación de estado en redes eléctricas son las siguientes:

- Medición de flujo de potencia activa y reactiva.
- Medición de inyección de potencia activa y reactiva.
- Medición de voltaje nodal.
- Medición de flujo de corriente.

Varios algoritmos se han sugerido para la estimación de estado en sistemas de transmisión, todos estos algoritmos generan resultados aceptables por la gran redundancia que se tiene en las mediciones, por otro lado debido al gran número y tipo de consumidores que se encuentran en las redes de distribución, tales como consumidores industriales, comerciales o residenciales es impráctico medir a todos estos demandantes de energía en tiempo real

para poder obtener las mediciones antes mencionadas. A nivel distribución son escasas las mediciones, debido a esto a través de pseudo-mediciones, datos de estudios de flujo de potencia y asignación de carga, serán las maneras para obtener los cuatro tipos de mediciones enlistadas en el párrafo anterior, observar la Figura 3.5. Las mediciones obtenidas también tendrán errores que comúnmente se asume que tienen una distribución normal Gaussiana.

Figura 3.5. Mediciones de entrada a un EERD.

Por otro lado el consumo de energía es una medición que si se tiene para todos los diferentes demandantes de energía, sin embargo en el algoritmo de estimación de estado aun no se usa esta medición quedando como una posibilidad de uso para trabajos futuros.

A continuación de la Figura 3.5, se describirá brevemente en qué consisten los cuatro primeros bloques.

3.3.2.1 Mediciones Reales.

El hablar de mediciones reales se refiere a mediciones obtenidas por equipos de medición conectados en la red de distribución del cual se ha obtenido una lectura en un instante, sin embargo por lo regular el único equipo de medición conectado en la mayoría de las redes de distribución se encuentra en la subestación, por razones económicas y por el gran numero de alimentadores es impráctico instalar medidores en toda la red. La incertidumbre correspondiente para estas mediciones depende de la precisión del instrumento de medición. Con esta incertidumbre se establece un factor de ponderación o peso para estas mediciones.

3.3.2.2 Pseudo-Mediciones [16].

Las pseudo-mediciones por lo regular son valores de carga los cuales son derivados de datos históricos. Ya que las cargas no se miden y sus valores derivados son inciertos estos actúan como variables aleatorias. Estas variables aleatorias (cargas), probablemente tomen valores entre las demandas mínimas y máximas en los diferentes nodos. La probabilidad de la variable aleatoria de tomar un valor es medido a través de una función de distribución de probabilidad y si esta variable aleatoria sigue una distribución normal, la varianza de esta distribución mide la incertidumbre. Para el cálculo del factor de ponderación a pseudo-mediciones, se sabe que suelen ser datos estadísticos por lo que se considera un rango de error que puede estar dentro de un $\pm 10\%$ a $\pm 30\%$, con este por ciento de error se calcula una desviación estándar con la expresión de la ecuación 3.5, la deducción de dicha fórmula se puede encontrar en la misma referencia citada en esta sección.

$$\sigma = \frac{\mu_{zi} * \% error}{3 * 100} \tag{3.5}$$

3.3.2.3 Datos de Flujos de Potencia.

Cuando se tenga un pequeño grupo de mediciones, los resultados de un estudio de flujos de potencia pueden ser usados como información en el grupo de mediciones.

Puesto que estos datos no proviene del sistema de medición en tiempo real la manera de manejar estos datos de flujos de potencia en cuanto a su ponderación, es que estas mediciones se pueden alterar entre 1 a 3 %, y la desviación estándar se calcula con la siguiente expresión [16].

$$\sigma_{zi} = \frac{z_t * \% error}{3 * 100}$$
(3.6)

Donde z_t es el valor real de la medición (dato de un estudio de flujo de potencia).

3.3.2.4 Asignación de Carga.

Para garantizar el problema de observabilidad del sistema es conveniente desarrollar asignación de carga o tomar todos los datos de carga nodal que se tengan como mediciones garantizando la observabilidad topológica y numérica del sistema. Algunos algoritmos para determinar asignación de carga se encuentran en las referencias [29-31], donde se obtienen las mediciones de inyección de potencia activa y reactiva (cargas) con su respectivo factor de ponderación.

3.4 Estimación de Estado en Sistemas de Distribución.

En este trabajo se desarrolla el algoritmo de EERD, partiendo del modelo usado para relacionar las mediciones y las variables de estado, esto es:

$$[Z] = h(X,Y) + e_z \tag{3.7}$$

Donde:

[Z] = Vector de mediciones.

 $e_z = \text{Error en las mediciones } (e_z \sim N(0, R_z))$

h(X, Y) = Functiones que relacionan variables de estado con mediciones.

El error en las mediciones con media cero y varianza σ^2 ; es usado como el peso o factor de ponderación de cada medición individualmente, por lo que una matriz R_Z será la matriz de covarianza del e_z entonces R_z (= $diag\{\sigma_{z1}^2, \sigma_{z2}^2, \dots, \sigma_{zn}^2\}$)[1].

Los siguientes pasos del algoritmo EERD tienen diferencia en comparación con un estimador de estado en transmisión en lo que a continuación se explica.

3.4.1 Ordenamiento en Estructuras de Niveles.

El ordenamiento en estructuras de niveles es básico para la implementación de barridos progresivos regresivos, usados para resolver estudios de flujos de potencia en sistemas de distribución monofásicos o trifásicos con eficientes resultados como se puede apreciar en [4].

Los barridos progresivos regresivos también se usarán para resolver el problema de estimación de estado en sistemas de distribución, por lo que un ordenamiento en estructuras de niveles se desarrollará como primer paso.

Conociendo el número de nodos y elementos, así como la conectividad de estos, se realiza un ordenamiento de nodos y elementos (ramas) en capas o niveles desde el nodo raíz (nodo en la subestación). Esto es llamado "Ordenamiento en estructura de niveles a partir de una raíz". Usualmente de un alimentador de distribución se cuenta con un diagrama geográfico, el cual puede ser ordenado en niveles, Figura 3.6.

Figura 3.6. Alimentador de distribución radial.

Este ordenamiento se realiza mediante algoritmos y teoría de grafos que se basan en hacer recorridos sobre la estructura grafica. Existen dos tipos de recorridos de grafos útiles en problemas de redes eléctricas, citados a continuación:

- 1.- Recorrido de bus búsqueda profunda (DFS)
- 2.- Recorrido de bus búsqueda amplia (BFS)

El ordenamiento de la Figura 3.6 se resume en la Tabla 3.1, mostrando cómo se visitarán los nodos en el uso del barrido progresivo regresivo.

Nodo i	N1	N2	N3	N4	N5	N8	N9		
Nodo j	N2	N3N4N5	N6N7	N8	N9	N10	N11N12		
Barrido Progresivo									
N1-N2,	N2-N3, N	N2-N4, N2-N5, N	3-N6, N3-N7,	N4-N8,	N5-N9,	N8-N10, N9	9-N11, N9-N12		
Barrido Regresivo									
N12-N9	, N11-N9,	N10-N8, N6-N3	, N7-N3, N8-	N4, N9-N	N5, N3-N2	2, N4-N2,	N5-N2, N2-N1		

Tabla 3.1. Ordenamiento de un alimentador de distribución radial.

Una vez que se ha conseguido el ordenamiento en estructura de niveles, se pasa a la estimación de estado la cual se hará de la siguiente forma:

3.4.2 Algoritmo de Estimación de Estado en Sistemas de Distribución.

Para describir la metodología se considera un sistema con un solo elemento monofásico con nodo de envió *i* y nodo receptor *j*, observar la Figura 3.7, donde V_i será el nodo referencia y V_j será el nodo con las variables de estado a estimar. Tal elemento tendrá su conjunto de mediciones *M* descrito como sigue $M = \{|V_i, V_j, P_j, Q_j, P_{ij}, Q_{ij}, I_{ij}|\}$, donde:

$$\begin{split} |V_i| &= \text{Medición de magnitud de voltaje nodo } i. \\ |V_j| &= \text{Medición de magnitud de voltaje nodo } j. \\ |I_{ij}| &= \text{Medición de magnitud de flujo de corriente del nodo } i \text{ al nodo } j. \\ |P_{ij}| &= \text{Medición de magnitud de flujo de potencia activa del nodo } i \text{ al nodo } j. \\ |Q_{ij}| &= \text{Medición de magnitud de flujo de potencia reactiva del nodo } i \text{ al nodo } j. \\ |Q_{ij}| &= \text{Medición de magnitud de flujo de potencia reactiva del nodo } i \text{ al nodo } j. \\ |P_j| &= \text{Medición de magnitud de inyección de potencia activa (carga) en el nodo } j. \\ |Q_j| &= \text{Medición de magnitud de inyección de potencia reactiva (carga) en el nodo } j. \end{split}$$

Figura 3.7. Sistema de distribución de dos nodos [17].

Obviamente es imposible tener muchos medidores sobre una rama, por lo que la mayoría de las configuraciones de medición para las ramas serán subconjuntos de *M*, buscando que estos subconjuntos de mediciones tengan el mismo tamaño que las variables de estado para garantizar la observabilidad numérica del sistema, por lo tanto los subconjuntos de medición estarán formados por cualquiera de las mediciones de entrada ya descritas.

3.4.2.1 Estimación de Estado por Rama para Sistemas de Distribución Radiales [17].

El problema de estimación de estado por mínimos cuadrados ponderados se formula como la minimización de la suma de los residuos de las medidas elevadas al cuadrado, por lo que la función objetivo a minimizar queda según la ecuación (3.8).

$$minJ(X,Y) = \sum_{k=1}^{m} w_k (z_k - h_k(X,Y))^2$$
(3.8)

Donde:

 z_k ; denota el vector que contiene las mediciones.

 w_k , $h_k(x)$; representan el peso y la función de medición asociada con las mediciones, respectivamente.

m; es el número de mediciones de la rama.
Rescribiendo la ecuación (3.8)

$$J(X,Y) = \frac{1}{2} [Z - h(X,Y)]^T R_Z^{-1} [Z - h(X,Y)]$$
(3.9)

Al tener que resolver por ramas, asumiendo en el nodo V_j las variables de estado, la función a minimizar quedara como se muestra en la ecuación (3.10).

$$J(V_{j}, \delta_{j}) = \frac{1}{2} \left[Z - h(V_{j}, \delta_{j}) \right]^{T} R_{Z}^{-1} \left[Z - h(V_{j}, \delta_{j}) \right]$$
(3.10)

A causa de la relación entre la cantidad de mediciones y variables de estado, la minimización de la ecuación anterior se es necesario derivar con respecto a las variables de estado de acuerdo a la siguiente ecuación diferencial.

$$H(V_j, \delta_j) = \frac{\partial h(V_j, \delta_j)}{\partial (V_j, \delta_j)}$$
(3.11)

Donde $H(V_j, \delta_j)$ es la matriz Jacobiana de mediciones, por lo que para dar solución a la expresión en (3.10), se obtiene mediante el método iterativo Newton del cual se tiene la solución mostrada en la ecuación (3.12), que normalmente es llamada ecuación normal del problema de mínimos cuadrados ponderados, de la cual obtenemos la corrección ΔV_j^{k+1} en una iteración k, obteniendo el vector de estado de la rama.

$$\left[H^{T}\left(V_{j}^{k}\right)WH\left(V_{j}^{k}\right)\right]\Delta V_{j}^{k+1} = H^{T}\left(V_{j}^{k}\right)W\left[z-h\left(V_{j}^{k}\right)\right]$$
(3.12)

El tamaño de la matriz Jacobiana y matriz de ganancia $H^T(V_j^k)WH(V_j^k)$ serán mx^2 y 2x2 respectivamente, siendo *m* el número de mediciones en la rama. Esto para sistemas monofásicos sin embargo si se trabaja con redes bifásicas o trifásicas la matriz Jacobiana y de ganancia tendrá un tamaño máximo de mx^6 y $6x^6$ por rama respectivamente.

Después de obtener el vector de estado del sistema, se obtiene una inyección de potencia equivalente estimada para el bus de envió *i* por la siguiente fórmula (3.13).

$$S_{equ-ij} = \frac{\left(V_i - \hat{V}_j\right)^*}{Z_{ij}^*} V_i$$
(3.13)

Donde Z_{ii} es la impedancia serie de esta rama.

 V_i Voltaje referencia en nodo *i*.

 \hat{V}_j Voltaje estimado en nodo *j*.

 Z_{ij} ; es la impedancia serie de la rama.

La varianza para esta inyección de potencia equivalente estimada es obtenida de la siguiente forma:

$$\sigma^{2}(P_{equ-ij}) = \sigma^{2}(P_{j})$$

$$\sigma^{2}(Q_{equ-ij}) = \sigma^{2}(Q_{j})$$
(3.14)

Si el procedimiento descrito antes se extiende a sistemas trifásicos con n número de nodos y m número de ramas conectadas radialmente, se harán ciertas modificaciones descritas a continuación, comenzando con la función objetivo a minimizar, la cual cambiara a la forma mostrada en la expresión (3.15).

$$minJ(X,Y) = \sum_{l=1}^{n} J_l(X,Y) = \sum_{l=1}^{n} \sum_{i=1}^{ml} w_{li} (z_{li} - h_{li}(X,Y))^2$$
(3.15)

Donde:

l; son las ramas del sistema radial.

ml; es el numero de mediciones en la rama l.

También cada rama ahora tiene subconjuntos de mediciones como se enlista a continuación;

$$M = \{ |V_i^p|, |V_j^p|, |I_{ij}^p|, P_{ij}^p, Q_{ij}^p, P_j^p, Q_j^p \}$$

p =fase "a", "b" o "c".

 $|V_i^p|$ = Medición de magnitud de voltaje nodo *i* en la fase *p*.

 $|V_i^p|$ = Medición de magnitud de voltaje nodo *j* en la fase *p*.

 $|I_{ij}^p|$ = Medición de magnitud de flujo de corriente en la fase *p*.

 P_{ij}^p = Medición de magnitud de flujo de potencia activa en la fase *p*.

 Q_{ii}^p = Medición de magnitud de flujo de potencia reactiva en la fase *p*.

 P_i^p = Medición de magnitud de inyección de potencia activa (carga) en la fase p.

 Q_i^p = Medición de magnitud de inyección de potencia reactiva (carga) en la fase p.

Con estos subconjuntos de mediciones y una vez que se tiene el ordenamiento en estructura de niveles, se comienza con el barrido regresivo, empezando desde las ramas en la última capa o nivel, aplicando estimación de estado por rama para conocer el vector de estado y la inyección de potencia equivalente estimada de estas ramas, después de este cálculo en todas las ramas de la ultima capa se hace el recorriendo hacia las ramas conectadas aguas arriba, considerando una nueva medición de inyección de potencia emanen te desde el bus *i* que se obtiene mediante la suma de las potencias equivalentes estimadas de las ramas aguas bajo conectados a un mismo nodo como se ve en la Figura 3.8.

Figura 3.8. Inyección de potencia equivalente [17].

La ecuación (3.16), ilustra también lo antes descrito.

$$S_{i}^{'} = S_{L} + \sum_{l} S_{equ-l}$$
 (3.16)

Donde *l* es la rama conectada al nodo *i*.

 S_L es la carga conectada el nodo.

Las varianzas para las inyecciones de potencias equivalentes también son calculadas asumiendo que las cargas son variables aleatorias independientes. Este proceso se realiza recorriendo el alimentador hasta llegar al nodo raíz en la subestación, terminando con el barrido regresivo.

Dando paso al inicio del barrido progresivo moviéndonos a lo largo del alimentador desde el nodo raíz hasta el último nodo en la última capa, donde se corregirán los voltajes estimados usando las inyecciones de potencia estimadas en las ramas calculadas en el barrido regresivo mediante la siguiente ecuación.

$$\begin{bmatrix} V_j^a \\ V_j^b \\ V_j^c \end{bmatrix} = \begin{bmatrix} V_i^a \\ V_i^b \\ V_i^c \end{bmatrix} - [Z_{abc}] * \begin{bmatrix} S_{equ-ij}^a / V_i^a \\ S_{equ-ij}^b / V_i^b \\ S_{equ-ij}^c / V_i^c \end{bmatrix}^*$$
(3.17)

El proceso iterativo comienza una vez terminado el barrido progresivo y los valores de voltajes nodales obtenidos en este barrido, se usarán en la siguiente iteración repitiendo ambos barridos hasta que el error máximo de voltaje sea menor que una tolerancia planteada, ecuación (3.18).

$$\begin{bmatrix} V_{j}^{a,k} \\ V_{j}^{b,k} \\ V_{j}^{c,k} \end{bmatrix} - \begin{bmatrix} V_{j}^{a,k+1} \\ V_{j}^{b,k+1} \\ V_{j}^{c,k+1} \end{bmatrix} < tol$$
(3.18)

En la Figura 3.9 se muestra el diagrama de flujo para el algoritmo de EERD, descrito en esta sección.

Figura 3.9. Diagrama de Flujo para Estimación de Estado en Sistemas de Distribución.

3.4.3 Estructura y formación del Jacobiano.

Dependiendo del número de fases por rama será el número de columnas para el Jacobiano. Por otro lado para una rama monofásica, bifásica o trifásica el vector de mediciones tiene la siguiente forma:

	Vector de Mediciones	
Rama Monofásica	Rama Bifásica	Rama Trifásica
		$\begin{bmatrix} P_{ij}^a \circ P_{ji}^a \end{bmatrix}$
		P ^b _{ij} ó P ^b _{ji}
		P ^c _{ij} ó P ^c _{ji}
	$\begin{bmatrix} P_{ii}^p & \phi & P_{ii}^p \end{bmatrix}$	
	$P_{i}^{q} \circ P_{i}^{q}$	$Q_{ij} \circ Q_{ji}$
		Q_{ij}^{ν} ó Q_{ji}^{ν}
	Q_{ij}^p ó Q_{ji}^p	Q_{ij}^{c} ó Q_{ji}^{c}
	Q_{ij}^q ó Q_{ji}^q	P_i^a
$\begin{bmatrix} P_{ij}^p \circ P_{ji}^p \end{bmatrix}$	$\left \right _{p^p}$	P_i^b
$\left Q_{ij}^{p} \circ Q_{ji}^{p} \right $	P_j^r	P_i^c
$\left \begin{array}{c}\\ p^p \end{array}\right $	P_j^{q}	'
\rightarrow \bigcap^p	$\rightarrow O_i^p$	Q_j^a
$\dot{Z} = \begin{bmatrix} Q_j \\ \end{bmatrix}$	$Z = \begin{bmatrix} c_j \\ O_i^q \end{bmatrix}$	$Z = \begin{bmatrix} Q_j^b \end{bmatrix}$
V_i^p		Q_j^c
V_i^p	V_j^p	 V^a
$\left -\frac{n}{n}\right $	V_j^q	V_j V^b
$\begin{bmatrix} I_{ij}^p \end{bmatrix}$		V_j V_i^c
	V_i	
		V_i^a
	I_{ii}^p	V_i^b
	$\begin{bmatrix} I_{ij}^{q} \\ I_{ij}^{q} \end{bmatrix}$	V_i^c
		I_{ij}^a
		I_{ii}^{b}
		$\begin{bmatrix} I_{ij}^{c} \end{bmatrix}$

Las variables de estado correspondientes a una rama monofásica son V_j^p , δ_j^p , para una rama bifásica se tiene V_j^p , V_j^q , δ_j^p , δ_j^q y para una rama trifásica serán V_j^a , V_j^b , V_j^c , δ_j^a , δ_j^b , δ_j^c por lo que el Jacobiano [*H*] puede tomar las formas que se muestran en la Tabla 3.2, dependiendo del tipo de configuración de línea que se tenga.

Jacobiano para	una Rama Mo	onofásica	Jacobiano para una Rama Bifásica				
$[H] = \begin{bmatrix} \delta \\ \partial H \\ \partial \delta \\ \partial Q \\ \partial \delta \\ \partial H \\ \partial \delta \\ \partial V \\ \partial \delta \\ \partial \delta \\ \partial V \\ \partial \delta $	$\begin{array}{c c} p & V_j^p \\ \hline p \hline p$		[H] =	$\begin{array}{c c} \delta_{j}^{p} & \delta_{j} \\ \hline \delta_{j}^{p,q} & \frac{\partial P_{i}}{\partial \delta_{j}^{p}} \\ \hline \partial \delta_{j}^{p,q} & \frac{\partial Q_{i}}{\partial \delta_{j}^{p}} \\ \hline \partial \delta_{j}^{p,q} & \frac{\partial Q_{i}}{\partial \delta_{j}^{p}} \\ \hline \partial \delta_{j}^{p,q} & \frac{\partial Q_{j}}{\partial \delta_{j}^{p}} \\ \hline \partial \delta_{j}^{p,q} & \frac{\partial Q_{j}}{\partial \delta_{j}^{p}} \\ \hline \partial \delta_{j}^{p,q} & \frac{\partial Q_{i}}{\partial \delta_{j}^{p}} \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} V_{j}^{q} \\ \hline \\ \frac{\partial P_{ij}^{p,q}}{\partial V_{j}^{q}} \\ \frac{\partial Q_{ij}^{p,q}}{\partial V_{j}^{q}} \\ \hline \\ \frac{\partial P_{j}^{p,q}}{\partial V_{j}^{q}} \\ \frac{\partial Q_{j}^{p,q}}{\partial V_{j}^{q}} \\ \frac{\partial Q_{j}^{p,q}}{\partial V_{j}^{q}} \\ \frac{\partial V_{j}^{p,q}}{\partial V_{j}^{q}} \\ \hline \\ \frac{\partial V_{j}^{p,q}}{\partial V_{j}^{q}} \\ \frac{\partial V_{j}^{p,q}}{\partial V_{j}^{q}} \\ \hline \\ \frac{\partial I_{ij}^{p,q}}{\partial V_{j}^{q}} \\ \hline \end{array}$	
	Ja	cobiano para	una Rama	Trifásica			
[H] =	$\begin{array}{c c} & \delta_{j}^{a} & \delta_{j}^{a} \\ \hline & \delta_{j}^{a,b,c} \\ \hline & \partial \delta_{j}^{a,b,c} \\ \hline & \partial \delta_{j}^{a} & \partial \delta_{j}^{a} \\ \hline & \partial \delta_{j}^{a,b,c} \\ \hline \end{array}$	$\begin{array}{c c} \delta_{j}^{b} & \delta_{j}^{c} \\ \delta_{j}^{a,b,c} & \partial \delta_{j}^{a,b,c} \\ \delta_{j}^{a,b,c} & \partial \delta_{j}^{c} \\ \delta_{j}^{c} & \partial \delta_{j}^{c} \\ \delta_{j}^{a,b,c} & \partial \delta_{j}^{c} \\ \delta_{j}^{a,b,c} & \partial \delta_{j}^{c} \\ \delta_{j}^{a,b,c} & \partial \delta_{j}^{c} \\ \delta_{j}^{c} & \partial \delta_{j}^{c} \\ \end{array}$	$\begin{array}{c c} V_j^a \\ V_j^a \\ \hline \\ \partial P_{ij}^{a,b,c} \\ \hline \\ \partial V_j^a \\ \hline \\ \hline \\ \partial V_j^a \\ \hline \\ \partial V_j^a \\ \hline \\ \hline \end{array}$	$\begin{array}{c c} V_{j}^{b} \\ \hline V_{j}^{a,b,c} \\ \hline \partial V_{j}^{a,b,c} \\ \hline \partial V_{j}^{b} \\ \hline \partial Q_{ij}^{a,b,c} \\ \hline \partial V_{j}^{b} \\ \hline \partial Q_{j}^{a,b,c} \\ \hline \partial V_{j}^{b} \\ \hline \partial Q_{j}^{a,b,c} \\ \hline \partial V_{j}^{b} \\ \hline \partial V_{j}^{b} \\ \hline \partial V_{j}^{a,b,c} \\ \hline \partial V_{j}^{a,b,c} \\ \hline \partial V_{j}^{a,b,c} \\ \hline \partial V_{j}^{b} \\ \hline \partial V_{j}^{b} \\ \hline \partial V_{j}^{b} \\ \hline \partial V_{j}^{b} \\ \hline \end{array}$	$\begin{array}{c} V_{j}^{c} \\ \hline V_{j}^{a,b,c} \\ \hline \partial V_{j}^{c} \\ \hline \partial V_{j}^{a,b,c} \\ \hline \partial V_{j}^{a,b,c} \\ \hline \partial V_{j}^{a,b,c} \\ \hline \partial V_{j}^{c} \\ \hline \end{array}$		

Tabla 3.2. Elementos que forman el Jacobiano.

3.4.4 Formulas para los Elementos del Jacobiano [7].

Los elementos que forma el Jacobiano de mediciones se forman de las derivadas parciales de las siguientes formulas que son relacionadas con las variables de estado.

Las potencias activas y reactivas inyectadas al sistema en el nodo i en una determinada fase p se expresa con la siguiente expresión:

$$P_k^p + jQ_k^p = V_k^p \sum_{\substack{m=1\\m\neq k}}^N \sum_{q=a}^c (Y_{km}^{pq})^* [(V_k^q)^* - (V_m^q)^*]$$
(3.19)

Donde:

k, m = Nodos del sistema. p, q = Diferentes fases. N = Número total de nodos. $P_k^p = \text{Potencia real en la fase p del nodo k.}$ $Q_k^p = \text{Potencia reactiva en la fase p del nodo k.}$ $V_k^p = \text{Voltaje complejo } V_k^p = V_k^p \angle \delta_k^p.$ $Y_{km}^{pq} = \text{Admitancia del sistema, } Y_{km}^{pq} = |Y_{km}^{pq}| \angle \theta_{km}^{pq}$

Separando la potencia real y reactiva, podemos obtener las ecuaciones de inyección de potencia activa y reactiva como se muestra en la ecuación (3.20).

$$P_{k}^{p} = V_{k}^{p} \sum_{\substack{m=1\\m\neq k}}^{N} \sum_{q=a}^{c} |Y_{km}^{pq}| \left(V_{k}^{q} \cos(\delta_{k}^{p} - \delta_{k}^{q} - \theta_{km}^{pq}) - V_{m}^{q} \cos(\delta_{k}^{p} - \delta_{m}^{q} - \theta_{km}^{pq}) \right)$$

$$Q_{k}^{p} = V_{k}^{p} \sum_{\substack{m=1\\m\neq k}}^{N} \sum_{q=a}^{c} Y_{km}^{pq} \left(V_{k}^{q} sen(\delta_{k}^{p} - \delta_{k}^{q} - \theta_{km}^{pq}) - V_{m}^{q} sen(\delta_{k}^{p} - \delta_{m}^{q} - \theta_{km}^{pq}) \right)$$
(3.20)

Las ecuaciones de mediciones en la rama de flujo de potencia real y reactiva son expresadas de la siguiente manera:

$$P_{km}^{p} = V_{k}^{p} \sum_{q=a}^{c} |Y_{km}^{pq}| (V_{k}^{q} \cos(\delta_{k}^{p} - \delta_{k}^{q} - \theta_{km}^{pq}) - V_{m}^{q} \cos(\delta_{k}^{p} - \delta_{m}^{q} - \theta_{km}^{pq}))$$

$$Q_{km}^{p} = V_{k}^{p} \sum_{q=a}^{c} |Y_{km}^{pq}| (V_{k}^{q} sen(\delta_{k}^{p} - \delta_{k}^{q} - \theta_{km}^{pq}) - V_{m}^{q} sen(\delta_{k}^{p} - \delta_{m}^{q} - \theta_{km}^{pq}))$$
(3.21)

Las magnitudes de corriente al ser mediciones, se tienen las siguientes expresiones que muestran la relación entre la corriente de línea y las variables de estado.

$$I_{km}^{p} = \sqrt{(a_{km}^{p})^{2} + (b_{km}^{p})^{2}}$$

$$a_{km}^{p} = \sum_{q=a}^{c} |Y_{km}^{pq}| (V_{k}^{q} cos(\delta_{k}^{p} + \theta_{km}^{pq}) - V_{m}^{q} cos(\delta_{m}^{q} + \theta_{km}^{pq}))$$

$$b_{km}^{p} = \sum_{q=a}^{c} |Y_{km}^{pq}| (V_{k}^{q} sin(\delta_{k}^{p} + \theta_{km}^{pq}) - V_{m}^{q} sin(\delta_{m}^{q} + \theta_{km}^{pq}))$$
(3.22)

Derivando las ecuaciones (3.20), (3.21) y (3.22) con respecto a las variables de estado, se obtienen las expresiones para evaluar los elementos del Jacobiano, las cuales se escriben en el Apéndice A.

3.5 Sistemas de Prueba para el Algoritmo EERD.

El algoritmo EERD es implementado en alimentadores de distribución trifásicos de 11 y 37 nodos.

Estos sistemas de distribución son desbalanceados y presentan distintas configuraciones en sus líneas. Los sistemas de prueba son diseñados con base a los alimentadores originales de 13 y 37 nodos de la IEEE [32-33].

Por lo tanto los datos de las líneas y las configuraciones de fase para nuestros sistemas de prueba se pueden encontrar en las referencias citadas anteriormente, donde se localizan los trabajos originales.

En la sección siguiente se presenta el análisis de resultados para el sistema de 11 nodos mientras que para el sistema de 37 nodos se encuentra en el Apéndice B.

3.5.1 Sistema de Prueba de 11 Nodos.

Este sistema de prueba de 11 Nodos como ya se mencionó es basado en el alimentador de distribución radial de 13 nodos de la IEEE [32], del cual se realizaron las siguientes modificaciones.

- 1) El regulador de voltaje, transformador e interruptor son omitidos, así que el segmento de línea y nodos correspondientes son quitados.
- 2) La carga distribuida y distintos modelos de carga se cambian a cargas de potencia constante aterrizada.
- 3) Un renombramiento del número de nodos se hace como se muestra en la Tabla 3.3.

Tabla 3.3. Renombramiento de Número de Nodos para el Sistema Eléctrico deDistribución de 11 Nodos.

	Número de Nodo									
650	632	633	645	646	671	675	684	611	652	680
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
1	1 2 5 3 6 4 9 7 10 11 8									8

Los datos referentes a las configuraciones de las líneas son los mismos que los del sistema original con estos se obtienen las impedancias para las distintas ramas. En cuanto a las mediciones dos casos de estudio son tratados y en cada uno se explica cómo se manejaron estas. El diagrama para este sistema de prueba se muestra en la Figura. 3.10.

Figura. 3.10. Sistema Eléctrico de Distribución de 11 Nodos.

En la Figura 3.10, se tienen alimentadores trifásicos, bifásicos y monofásicos, tratando de simular las condiciones que prevalecen en los sistemas eléctricos de distribución. La idea de estructurar el sistema de prueba conforme a la figura anterior se basa en [34].

3.5.2 Casos de Estudio 1: Sistema de prueba de 11 Nodos, evaluación del funcionamiento del algoritmo EERD.

Este caso 1, trata de un SED, donde se busca primeramente comprobar el funcionamiento del algoritmo de estimación de estado, los datos de la carga son tomados como mediciones de inyección de potencia activa y reactiva. La ponderación correspondiente a estas mediciones se calculan con forme a la ecuación (3.6), además se tendrá una sola medición de voltaje en el nodo uno, representando la medición de voltaje en la subestación. El esquema de medición se muestra en la Figura 3.11 y las mediciones en la Tabla 3.4.

Figura 3.11. Esquema de Mediciones del Sistema Eléctrico de Distribución de 11 Nodos, Caso 1.

El esquema de la Figura 3.11 resulta ser un sistema de cero grados de libertad ya que este alimentador de distribución tiene el mismo número de variables de estado y mediciones.

	Medición de Inyección de Potencia									
Nodo	Fase	e "A"	Fase	e "B"	Fase "C"					
	PL	QL	PL	QL	PL	QL				
	(kW)	(kVar)	(kW)	(kVar)	(kW)	(kVar)				
1	-	-	-	-	-	-				
2	201.0	115.0	225.5	129.0	251.0	144.0				
3	-	-	170.0	125.0	80.0	68.0				
4	160.0	115.0	125.0	80.0	151.0	90.0				
5	160.0	110.0	120.0	90.0	120.0	90.0				
6	-	-	230.0	132.0	80.0	60.0				
7	0.0	0.0	0.0	0.0	0.0	0.0				
8	0.0	0.0	0.0	0.0	0.0	0.0				
9	90.0	60.0	90.0	60.0	90.0	50.0				
10	-	-	-	-	170.0	80.0				
11	128.0	86.0	-	-	-	-				

Tabla 3.4. Mediciones para el Sistema Eléctrico de Distribución 11 Nodos, Caso 1

		Medición de Voltaje	
Nodo	Fase "A"	Fase "B"	Fase "C"
	$ V_A $ (Volts)	$ V_B $ (Volts)	$ V_{\mathcal{C}} $ (Volts)
1	2401.77	2401.77	2401.77
-	No hay medición.		

Con el esquema de mediciones mostrado anteriormente se procede a obtener el vector de estado mediante el EERD desarrollado en este trabajo, el cual converge en tres iteraciones. Para demostrar la eficacia del algoritmo EERD, se realiza previamente un estudio de flujos de potencia, para obtener un reporte completo del estado del sistema que se toma como estado base y se compara con el vector de estado estimado. Tal comparación se aprecia en las tablas siguientes:

Nada	Faces	Vector de E	stado Base	Vector de Esta	ado Estimado
INOUO	rases	V (Volts)	δ (grados)	V (Volts)	δ (grados)
	"A"	2401.777	0.0	2401.777	0.0
1	"B"	2401.777	-120	2401.777	-120
1	"C"	2401.777	120	2401.777	120
	"A"	2338.754	-0.715	2339.129	-0.7164
2	"B"	2302.889	-121.962	2302.601	-121.9439
	"C"	2308.999	117.728	2308.772	117.7233
2	"B"	2266.329	-122.062	2266.074	-122.0347
5	"C"	2302.096	117.568	2301.804	117.5617
	"A"	2302.799	-1.665	2303.179	-1.6664
4	"B"	2298.588	-122.254	2298.297	-122.2362
	"C"	2259.064	116.936	2258.834	116.9304
	"A"	2331.435	-0.787	2331.810	-0.788
5	"B"	2297.961	-122.013	2297.672	-121.9945
	"C"	2302.400	117.72	2302.174	117.7144
C	"B"	2254.170	-122.116	2253.920	-122.087
0	"C"	2300.550	117.517	2300.244	117.5098
7	"A"	2297.920	-1.724	2298.302	-1.7249
/	"C"	2250.489	116.906	2250.258	116.9007
	"A"	2302.799	-1.665	2303.179	-1.6664
8	"B"	2298.588	-122.254	2298.297	-122.2362
	"C"	2259.064	116.936	2258.834	116.9304
	"A"	2299.885	-1.669	2300.266	-1.6704
9	"B"	2295.849	-122.258	2295.558	-122.2402
	"C"	2256.340	116.913	2256.111	116.9074
10	"C"	2242.029	116.827	2241.797	116.8215
11	"A"	2283.592	-1.641	2283.976	-1.6424

Tabla 3.5. Solución de Estimación de Estado para el Caso 1.

Nada	Face	%Eı	ror
INDUO	rase	Magnitud	Angulo
	"A"	0	0
1	"B"	0	0
1	"С"	0	0
	"A"	0.016034	0.195804
2	"B"	0.012506	0.014840
	"С"	0.009831	0.003992
	"B"	0.011251	0.022365
3	"C"	0.012684	0.005358
	A	0.016502	0.084084
4	B.	0.012659	0.014559
	"C"	0.010181	0.004788
	"A"	0.016085	0.127064
5	"B"	0.012576	0.015162
	"C"	0.009815	0.004757
6	"B"	0.011090	0.023747
0	"С"	0.013301	0.006126
7	"A"	0.016624	0.010264
/	"С"	0.052204	0.004533
	"A"	0.016502	0.084084
8	"B"	0.012659	0.014559
	"С"	0.010181	0.004788
	"A"	0.016566	0.083882
9	"B"	0.012675	0.014559
	"С"	0.010149	0.004789
10	"C"	0.010347	0.004707
11	"A"	0.016816	0.085313

Tabla 3.6. Error Entre los Vectores de Estado Base y Estimado para el Caso 1.

Tabla 3.7. Residuos Entre los Flujos de Potencia Obtenidos a Partir de los Vectores deEstado Base y Estimado para el Caso 1.

Elemento	Nodos p. g. Fases		Flujos Base		Flujos Estimados		Residuo		
	РЧ	Ч		P _{pq} (pu)	Q _{pq} (pu)	P _{pq} (pu)	Q _{pq} (pu)	RP _{pq} (pu)	RQ _{pq} (pu)
			"A"	7.55610	5.20620	7.5547	5.2055	0.00140	0.00070
1	1	2	"B"	9.86280	6.84490	9.8277	6.8713	0.03510	-0.02640
			"C"	9.62470	6.57520	9.6251	6.5767	-0.00040	-0.00150
2	2	2	"B"	4.07130	2.62800	4.0354	2.6568	0.03590	-0.02880
2	2	3	"C"	1.60120	1.28940	1.6012	1.2895	0.00000	-0.00010
			"A"	3.80680	2.72190	3.8068	2.7219	0.00000	0.00000
3	2	4	"B"	2.14790	1.41440	2.1479	1.4144	0.00000	0.00000
			"С"	4.18170	2.31720	4.1817	2.3173	0.00000	-0.00010
			"A"	1.60360	1.10550	1.6037	1.1055	-0.00010	0.00000
4	2	5	"B"	1.20180	0.90300	1.2018	0.903	0.00000	0.00000
			"C"	1.20330	0.90277	1.2033	0.9028	0.00000	-0.00003

5	3	6	"B" "C"	2.31120 0.80000	1.32930 0.60112	2.2989 0.8	1.3401 0.6011	0.01230 0.00000	-0.01080 0.00002
6	4	7	"A" "C"	1.29110 1.71140	0.86669 0.80933	1.2911 1.7114	0.8667 0.8093	$0.00000 \\ 0.00000$	-0.00001 0.00003
7	4	8	"A" "B" "C"	0 0 0	0 0 0	0 0 0	0 0 0	$\begin{array}{c} 0.00000\\ 0.00000\\ 0.00000\end{array}$	$\begin{array}{c} 0.00000\\ 0.00000\\ 0.00000\end{array}$
8	4	9	"A" "B" "C"	0.90109 0.90103 0.90089	0.60082 0.60078 0.50097	0.9011 0.901 0.9009	0.6008 0.6008 0.501	-0.00001 0.00003 -0.00001	0.00002 -0.00002 -0.00003
9	7	10	"C"	1.70530	0.80536	1.7053	0.8054	0.00000	-0.00004
10	7	11	"A"	1.28930	0.86353	1.2893	0.8635	0.00000	0.00003

Tabla 3.8. Residuo entre Mediciones para el Caso 1.

Tipo De	Nodo	Fases	Valor Me	edido (pu)	Valor Esti	mado (pu)	Resid	uo (pu)
Medición	1		Pi	Qi	Pi	Qi	Pi	Qi
		"A"	2.010	1.150	2.010	1.150	0	0
Inyección	2	"B"	2.255	1.290	2.255	1.290	0	0
		"C"	2.510	1.440	2.510	1.440	0	0
Invección	3	"В"	1.700	1.250	1.676	1.268	0.024	-0.018
Inyeccion	5	"C"	0.800	0.680	0.800	0.679	0	0.001
		"A"	1.600	1.150	1.600	1.150	0	0
Inyección	4	"B"	1.250	0.800	1.250	0.800	0	0
		"C"	1.510	0.900	1.510	0.900	0	0
		"A"	1.600	1.100	1.600	1.100	0	0
Inyección	5	"В"	1.200	0.900	1.200	0.900	0	0
2		"С"	1.200	0.900	1.200	0.900	0	0
Income a l'ém	6	"B"	2.300	1.320	2.288	1.331	0.012	-0.011
Inyeccion	0	"С"	0.800	0.600	0.800	0.600	0	0
Invoción	7	"A"	0	0	0.000	0.000	0	0
Inyeccion	/	"С"	0	0	0.000	0.000	0	0
		"A"	0	0	0.000	0.000	0	0
Inyección	8	"В"	0	0	0.000	0.000	0	0
		"С"	0	0	0.000	0.000	0	0
		"A"	0.900	0.600	0.900	0.600	0	0
Inyección	9	"В"	0.900	0.600	0.900	0.600	0	0
_		"С"	0.900	0.500	0.900	0.500	0	0
Inyección	10	"С"	1.700	0.800	1.700	0.800	0	0
Inyección	11	"A"	1.280	0.860	1.280	0.860	0	0
							-	
		"A"	1	1]	1		0
Voltaje	1	"B"	1	1		1		0
		"C"	1	1	1	1		0

Figura. 3.12. Perfiles de Voltaje de las Tres Fases del Sistema Eléctrico de Distribución - Caso 1.

3.5.3 Casos de Estudio 2: *Sistema de prueba de 11 Nodos, con cambios de configuración de mediciones y perturbación en estas.*

En este caso 2, un cambio en la configuración de mediciones se hace con respecto al caso anterior, ahora se manejan mediciones de flujo de potencia que aleatoriamente se contaminaran con error del 30% estas mediciones son tomadas de un estudio de flujo de potencia previo que se hizo para este sistema. El propósito de este caso de estudio es buscar el ajuste del vector de estado, la ponderación para estas mediciones contaminadas se calculan con forme a la ecuación (3.6). Las mediciones usadas se muestran en la Tabla 3.9 y el esquema de medición en la Figura 3.13.

Figura 3.13. Esquema de Mediciones del Sistema Eléctrico de Distribución de 11 Nodos, Caso 2.

			Ι	Medición de Fl	ujo de Potencia	1		
No	odos	Fase	"A"	Fase	"В"	Fase	Fase "C"	
р	q	P _{pq} (kW)	Q _{pq} (kVar)	P _{pq} (kW)	Q _{pq} (kVar)	P _{pq} (kW)	Q _{pq} (kVar)	
1	2	755.610	520.620	986.280	684.490	962.470	657.520	
2	3	-	-	407.130	262.800	160.120	128.940	
2	4	494.884	272.190	214.790	141.440	418.170	231.720	
2	5	160.360	110.550	156.234	117.390	156.429	117.360	
3	6	-	-	231.120	132.930	104.000	78.145	
4	7	129.110	86.669	-	-	171.140	80.933	
4	8	0.0	0.0	0.0	0.0	0.0	0.0	
4	9	90.109	60.082	90.103	60.078	117.115	50.097	
7	10	-	-	-	-	170.530	80.536	
7	11	128.930	86.353	-	-	-	-	

Tabla 3.9. Mediciones del Sistema Eléctrico de Distribución de 11 Nodos, Caso 2

	Medición de Voltaje								
Nodo	Fase "A"	Fase "B"	Fase "C"						
	$ V_A $ (Volts)	$ V_B $ (Volts)	$ V_c $ (Volts)						
1	2401.77	2401.77	2401.77						
- No h	 No hay medición. Medición perturbada 30% 								

Vector de Estado Base Vector de Estado Estimado Nodo Fases |V| (Volts) δ (grados) |V| (Volts) δ (grados) "A" 2401.777 0.0 2401.777 0.0 "В" 2401.777 -120 2401.777 -120 1 "C" 2401.777 120 2401.777 120 "A" 2338.754 -0.715 2338.747 -0.7151 2 "В" 2302.889 -121.962 2302.881 -121.961 "C" 2308.999 117.728 2308.990 117.728 "B" 2266.329 -122.062 2266.349 -122.055 3 "C" 2302.096 117.568 2302.043 117.567 "A" 2302.799 2296.774 -2.1376 -1.665 4 "B" 2298.588 -122.254 2307.999 -122.194"C" 2259.064 116.936 2253.481 117.094 "A" 2331.435 -0.787 2332.283 -0.776 "B" 5 2297.961 -122.013 2295.496 -122.016 "C" 2302.400 117.72 2300.623 117.686 "B" 2254.170 -122.116 2254.207 -122.098 6 "C" 2300.550 117.517 2299.095 117.510 "A" 2297.920 -1.724 2291.891 -2.195 7 "C" 2250.489 116.906 2244.906 117.064 "A" 2302.799 -1.665 2296.774 -2.137 8 "B" 2298.588 -122.254 2307.999 -122.194 "C" 2259.064 116.936 117.094 2253.481 "A" 2299.885 -1.669 2293.995 -2.1489 "В" 2295.849 -122.258 2305.417 -122.190 "C" 2256.340 116.913 2249.848 117.058 "C" 10 2242.029 116.827 2236.425 116.985 "A" 11 2283.592 -1.641 2277.526 -2.112

Tabla 3.10. Solución de Estimación de Estado para el Caso 2.

Nada	Facos	Error					
INDUO	rases	Magnitud	Angulo				
	"A"	0	0				
1	"B"	0	0				
1	"C"	0	0				
	"A"	0.000003	0.000140				
2	"B"	0.000003	0.000002				
	"C"	0.000004	0.000007				
	"В"	0.000009	0.000050				
3	"С"	0.000023	0.000002				
	"A"	0.002616	0.283844				
4	"B"	0.004094	0.000487				
	"C"	0.002471	0.001355				
	"A"	0.000364	0.013342				
5	"B"	0.001073	0.000032				
	"C"	0.000772	0.000282				
6	"B"	0.000016	0.000142				
0	"C"	0.000632	0.000055				
7	"A"	0.002624	0.273700				
/	"C"	0.002481	0.001357				
	"A"	0.002616	0.283000				
8	"B"	0.004094	0.000487				
	"C"	0.002471	0.001355				
	"A"	0.002561	0.287000				
9	"B"	0.004168	0.000554				
	"C"	0.002500	0.001243				
10	"С"	0.002500	0.001357				
11	"A"	0.002656	0.287500				

Tabla 3.11. Error entre los vectores de estado base y estimado para el caso 2.

Tabla 3.12. Comparación Entre Mediciones para el Caso 2.

Elemento		Fases	Flujos Base		Flujos Medidos		Flujos Estimados	
	p q		$P_{pq}(pu)$	Q _{pq} (pu)	P _{pq} (pu)	Q _{pq} (pu)	P _{pq} (pu)	Q _{pq} (pu)
		"A"	7.55610	5.20620	7.55610	5.20620	7.5561	5.2062
1	1 2	"В"	9.86280	6.84490	9.86280	6.84490	9.8628	6.8449
		"C"	9.62470	6.57520	9.62470	6.57520	9.6247	6.5752
2	2 2	"B"	4.07130	2.62800	4.07130	2.62800	4.0478	2.6461
2	2 2 3	"C"	1.60120	1.28940	1.60120	1.28940	1.6012	1.2894
		"A"	3.80680	2.72190	4.94884	2.72190	4.9488	2.7219
3	2 4	"B"	2.14790	1.41440	2.14790	1.41440	2.1479	1.4144
		"C"	4.18170	2.31720	4.18170	2.31720	4.1817	2.3172
		"A"	1.60360	1.10550	1.60360	1.10550	1.6036	1.1055
4	2 5	"B"	1.20180	0.90300	1.56234	1.17390	1.5623	1.1739
		"С"	1.20330	0.90277	1.56429	1.17360	1.5643	1.1736

5	3 6	"В"	2.31120	1.32930	231.120	1.32930	2.2987	1.3397
5	5 0	"C"	0.80000	0.60112	1.04000	0.78145	1.0400	0.7814
6	4 7	"A"	1.29110	0.86669	1.29110	0.86669	1.2911	0.8667
0	4 /	"C"	1.71140	0.80933	1.71140	0.80933	1.7114	0.8093
		"A"	0	0	0.0	0.0	0.0	0.0
7	4 8	"B"	0	0	0.0	0.0	0.0	0.0
		"C"	0	0	0.0	0.0	0.0	0.0
		"A"	0.90109	0.60082	0.90109	0.60082	0.9011	0.6008
8	4 9	"B"	0.90103	0.60078	0.90103	0.60078	0.9010	0.6008
		"C"	0.90089	0.50097	1.17115	0.50097	1.1711	0.5010
9	7 10	"C"	1.70530	0.80536	1.70530	0.80536	1.7053	0.8054
10	7 11	"A"	1.28930	0.86353	1.28930	0.86353	1.2893	0.8635
-	-							
			VOLT	ΓAJES V (Volts)			
	Nodo	Fases	Voltaje	es Base	Voltajes Medidos		Voltajes Estimados	
		"A"	240	1.77	240	1.77	240	1.77
	1	"В"	240	1.77	2401.77		2401.77	
		"C"	240	1.77	240	1.77	240	1.77

Figura. 3.14. Perfiles de Voltaje de las Tres Fases del Sistema Eléctrico de Distribución - Caso 2.

3.6 Análisis de Resultados.

Casos de Estudio 1: Sistema de prueba de 11 Nodos, evaluación del funcionamiento del algoritmo EERD.

De los errores mostrados en la Tabla 3.6, se observa que tienen valores muy pequeños lo que hace notar que los valores estimados, en general, se aproximan en gran medida a las cantidades base, por lo tanto se tiene un buena estimación de estado, que se valida con los resultados de un estudio de flujos de potencia. Los residuos mostrados en las Tablas 3.7 y 3.8, también tienen un valor despreciable debido a que todas las mediciones usadas se manejan con un error muy pequeño, ya que se tiene el propósito de obtener un ajuste del voltaje con respecto al calculado con el estudio de flujo de potencia, para comprobar la funcionalidad del EERD. En la figura 3.12 se aprecia los perfiles de voltaje para las tres fases del sistema, y se hace una comparación esquemática entre los vectores de estado base y estado estimado; donde se observa que hay el mismo comportamiento sin gran diferencia entre los valores. También se puede observar el desbalance de fases presente en este sistema.

Casos de Estudio 2: *Sistema de prueba de 11 Nodos, con cambios de configuración de mediciones y perturbación en estas.*

Los resultados expresados en las Tablas 3.10, 3.11 y 3.12, muestran un buen ajuste del vector de estado, esto a pesar de la contaminación en algunas mediciones.

En la Figura 3.14 se tienen los perfiles de voltaje para las tres fases del sistema, donde una comparación entre el vector de estado base y estimado se aprecia.

Por otro lado se llega a mejores resultados manejando mediciones de flujo de potencia principalmente. El no manejar pseudo-mediciones es debido a la falta de datos estadísticos para estos sistemas de prueba.

CAPÍTULO 4

LOCALIZACIÓN ÓPTIMA DE LAS MEDICIONES.

4.1 Introducción.

La redundancia en las mediciones juega un papel importante en el estimador de estado, ya que como se ha revisado en el capítulo anterior un conjunto de mediciones es indispensable para poder desarrollar un algoritmo de estimación de estado en una red de distribución. Este conjunto de mediciones debe cumplir con la observabilidad numérica y topológica de la red, en muchos casos la red de distribución puede ser no observable y por otro lado disponer de un gran número de mediciones incrementa el costo de la red de distribución, por esto se tiene el interés de conocer un conjunto de mediciones que cumpla con la observabilidad y que además sea óptimo.

En la mayoría de las redes de distribución, los flujos de potencia, la corriente y el voltaje son las mediciones típicas que se tienen en la subestación y para cumplir con lo referente a observabilidad se manejan pseudo-mediciones alterando el vector de estado estimado. Con la automatización de los sistemas de distribución que se está buscando en los años recientes y futuros, se tendrán mediciones reales que mejoraran el vector de estado y determinar el número óptimo de estas es muy importante por razones económicas.

Las consideraciones económicas suelen limitar el número de medidores. Por lo que se requiere definir óptimamente la ubicación, el tipo y número de mediciones. Estas cuestiones se han abordado en la literatura a nivel transmisión. Pero se ha prestado poca atención a la ubicación de mediciones a nivel de distribución [35]. La ubicación de las mediciones generalmente se definen por:

- La mejora de la observabilidad de la red;
- La minimización de los errores en las estimaciones.

Una técnica para la colocación de medidores con el propósito de mejorar la calidad de las estimaciones de la tensión y el ángulo a través de una red, se presenta en [35]. Dicha técnica se basa en la mejora secuencial de un índice de probabilidad binomial que rigen los errores en el voltaje y ángulo en cada nodo.

Por otro lado la implementación de la norma y norma podada para la estimación robusta que se desarrolló en [36], se usará en este trabajo para desarrollar una metodología que determine un conjunto óptimo de mediciones en una red de distribución. A lo largo de este capítulo se explicará en qué consiste dicha metodología y se aplicará al sistema de prueba de 11 nodos visto en el capítulo tres planteando cuatro casos de estudio, en la sección correspondiente se explica en qué consiste cada uno y se analizan los resultados obtenidos.

4.2 Método de la Norma y Norma Podada.

La aplicación de la norma y norma podada en [36], es para generar un estimador robusto en la presencia de errores sustanciales y datos atípicos, esto en sistemas eléctricos de potencia. Brevemente el método de la norma y norma podada consiste en lo siguiente;

4.2.1 Método de la Norma [36].

En el caso de sistemas de potencia el modelo de la red se desarrolla en una manera linealizada del caso nolineal.

Donde:

$$[Z] = h(X,Y) + e_z \tag{4.1}$$

[Z] = Vector de mediciones.

 e_z = Error en las mediciones

h(X, Y) = Functiones que relacionan variables de estado con mediciones.

Linealizando la ecuación (4.1):

$$[Z] = A(X, Y) \tag{4.2}$$

Donde:

A: Matriz jacobiana

Esto se puede obtener por un método de Newton o por transformaciones.

En los métodos robustos es necesario resolver k subsistemas con cero grados de libertad, esto es.

$$r_i = z_{ci} - Bx_i \; ; i = 1, \dots, l \tag{4.3}$$

Donde:

B: es una matriz de incidencia.

 z_c : vector de mediciones linealizado.

x: vector de estado.

k : número de subsistemas a resolver.

Aplicando el concepto de la norma a la ecuación anterior, se tiene:

$$med \|r_i\| para \ i = 1, \dots l$$
 (4.4)

r: vector de residuos.

4.2.2 Método de la Norma Podada [36].

La ecuación anterior es muy similar para ser manejada por el método de la norma podada, no obstante la característica de robustez que poseerá es más significativa debido a que los residuos más grandes no son considerados, obteniendo de esta manera un vector de residuos con variaciones muy pequeñas entre ellos.

4.2.3 Norma y Norma Podada Usadas para la Localización Óptima de Mediciones en los Sistemas Eléctricos de Distribución.

Los conceptos mencionados anteriormente, se usarán para desarrollar una metodología que determine un conjunto óptimo de mediciones.

Lo ideal en un estudio de estimación de estado para un sistema de distribución es contar con bastantes mediciones, que formen un sistema sobredeterminado donde; el número de mediciones (n.m) sea mayor que las variables de estado (n.v.e), este sistema será un espacio muestral. Partiendo de esta suposición de contar con bastantes mediciones en toda la red se seleccionarán aleatoriamente subconjuntos o submuestras de mediciones. La selección consistirá en número, tipo y posición de la medición, para formar subsistemas con cero grados de libertad. Por otro lado calculando los flujos de potencia para un SED se tendrá un análisis completo del sistema en estudio, que se tomará como base. Posteriormente para cada subsistema se calculará el vector de estado con el algoritmo EERD que se ha desarrollado en este trabajo, así mismo todos los flujos de potencia en las ramas del sistema.

Con los flujos de potencia calculados, se procede a obtener residuos entre los flujos de potencia base que permanecerán fijos, menos los flujos de los subsistemas formados aleatoriamente, esto para todas las ramas del sistema, expresando lo anterior en forma vectorial se llega a lo indicado en la ecuación (4.5).

$$\begin{bmatrix} r_{S_1}^{a,b,c} \\ r_{S_2}^{a,b,c} \\ \vdots \\ r_{S_m}^{a,b,c} \end{bmatrix} = \begin{bmatrix} \varepsilon_{0_1}^{a,b,c} \\ \varepsilon_{0_2}^{a,b,c} \\ \vdots \\ \varepsilon_{0_m}^{a,b,c} \end{bmatrix} - \begin{bmatrix} \varepsilon_{S_1}^{a,b,c} \\ \varepsilon_{S_2}^{a,b,c} \\ \vdots \\ \varepsilon_{S_m}^{a,b,c} \end{bmatrix}$$
(4.5)

Donde:

m = Número de ramas del sistema. $\varepsilon_{0_m}^{a,b,c} = Flujos de potencia del sistema base de la rama 1 ... m, para las fases a, b ó c.$ $<math>\varepsilon_{S_m}^{a,b,c} = Flujos de potencia del subsistema de la rama 1 ... m, para las fases a, b ó c.$ $r_{S_m}^{a,b,c} = Residuo de la rama 1 ... m, para las fases a, b ó c.$ Debido a que el número de subsistemas o submuestras formadas, es mayor a uno se forma una matriz de residuos, esto para cada fase, como se muestra en las ecuaciones siguientes:

$$M_r^a = \begin{bmatrix} r_{1_1}^a & r_{2_1}^a & \dots & r_{k_1}^a \\ r_{1_2}^a & r_{2_2}^a & \dots & r_{k_2}^a \\ \vdots & \vdots & \vdots & \vdots \\ r_{1_m}^a & r_{2_m}^a & \dots & r_{k_m}^a \end{bmatrix}$$
(4.6)

Donde:

k = Número de submuestras

 $r_{k_m}^a$ = Residuo para la fase "a" de la submuestra 1 ... k, y de la rama 1 ... m. M_r^a = Matriz de residuos para la fase "a".

$$M_{r}^{b} = \begin{bmatrix} r_{1_{1}}^{b} & r_{2_{1}}^{b} & \dots & r_{k_{1}}^{b} \\ r_{1_{2}}^{b} & r_{2_{2}}^{b} & \dots & r_{k_{2}}^{b} \\ \vdots & \vdots & \vdots & \vdots \\ r_{1_{m}}^{b} & r_{2_{m}}^{b} & \dots & r_{k_{m}}^{b} \end{bmatrix}$$
(4.7)

Donde:

k = Número de submuestras

 $r_{k_m}^b$ = Residuo para la fase "b" de la submuestra 1 ... k, y de la rama 1 ... m. M_r^b = Matriz de residuos para la fase "b".

$$M_{r}^{c} = \begin{bmatrix} r_{1_{1}}^{c} & r_{2_{1}}^{c} & \dots & r_{k_{1}}^{c} \\ r_{1_{2}}^{c} & r_{2_{2}}^{c} & \dots & r_{k_{2}}^{c} \\ \vdots & \vdots & \vdots & \vdots \\ r_{1_{m}}^{c} & r_{2_{m}}^{c} & \dots & r_{k_{m}}^{c} \end{bmatrix}$$
(4.8)

Donde:

= Número de submuestras k $r_{k_m}^c$ = Residuo para la fase "c" de la submuestra 1 ... k, y de la rama 1 ... m. M_r^c = Matriz de residuos para la fase "c".

Para las matrices de residuos M_r^a , M_r^b , M_r^c , se calcula la norma de cada columna que forman estas matrices, por ejemplo para la matriz M_r^a ver ecuación (4.9). Posteriormente se formará un vector con estas normas, ecuación (4.10).

$$\|c_{1}^{a}\| = \left\| \begin{matrix} r_{1_{1}}^{a} \\ r_{1_{2}}^{a} \\ \vdots \\ r_{1_{m}}^{a} \end{matrix} \right\|, \qquad \|c_{2}^{a}\| = \left\| \begin{matrix} r_{2_{1}}^{a} \\ r_{2_{2}}^{a} \\ \vdots \\ r_{2_{m}}^{a} \end{matrix} \right\|, \qquad \dots \qquad \|c_{j}^{a}\| = \left\| \begin{matrix} r_{k_{1}}^{a} \\ r_{k_{2}}^{a} \\ \vdots \\ r_{k_{m}}^{a} \end{matrix} \right\|$$
(4.9)

i = Número de columnas de la matriz de residuos. $\|c_j^a\|$ = Norma de la columna 1 ... *j*, para la fase "a".

$$\boldsymbol{\nu}_{\parallel,\parallel}^{a} = \begin{bmatrix} \|\boldsymbol{c}_{1}^{a}\| \\ \|\boldsymbol{c}_{2}^{a}\| \\ \vdots \\ \|\boldsymbol{c}_{j}^{a}\| \end{bmatrix}$$
(4.10)

 $v_{\parallel,\parallel}^a$ = Vector de normas para la fase "a"

De igual forma para las fases "b" y "c" se forman sus vectores de normas, ecuaciones (4.11) y (4.12).

$$\nu_{\parallel,\parallel}^{b} = \begin{bmatrix} \|c_{1}^{b}\| \\ \|c_{2}^{b}\| \\ \vdots \\ \|c_{j}^{b}\| \end{bmatrix}$$
(4.11)

 $v_{\parallel,\parallel}^b$ = Vector de normas para la fase "b"

$$\nu_{\parallel,\parallel}^{c} = \begin{bmatrix} \|c_{1}^{c}\| \\ \|c_{2}^{c}\| \\ \vdots \\ \|c_{j}^{c}\| \end{bmatrix}$$
(4.12)

 $v_{\parallel,\parallel}^c$ = Vector de normas para la fase "c"

De cada vector de normas se obtiene la norma mínima. Debido al desbalance y distinta configuración de fases en las ramas de los sistemas de distribución se tendrán tres diferentes valores de normas mínimas, ecuación (4.13).

$$n.m^{a} = min(v_{\parallel,\parallel}^{a}), \quad n.m^{b} = min(v_{\parallel,\parallel}^{b}), \quad n.m^{c} = min(v_{\parallel,\parallel}^{c})$$
(4.13)

 $n.m^a$ = norma mínima de la fase "a" $n.m^b$ = norma mínima de la fase "b" $n.m^c$ = norma mínima de la fase "c"

Lo que se propone en este trabajo es que el valor mínimo de estas tres cantidades indicará un valor óptimo, por lo tanto se encuentran las mediciones óptimas, ecuación (4.14).

$$\{Z\}_{\acute{o}ptimo} = min(n.m^a, n.m^b, n.m^c)$$

$$(4.14)$$

 $\{Z\}_{optimo}$ = conjunto optimo de mediciones.

4.3 Sistemas de Prueba del Algoritmo de Localización Óptima de Mediciones.

Se plantean cuatro casos de estudio para ejecutar el algoritmo descrito anteriormente, en la sección correspondiente a cada sistema de prueba se explica en qué consiste cada uno y se analizan los resultados obtenidos.

4.3.1 Sistema de Prueba Caso 1.

El sistema de prueba de 11 nodos de la sección 3.5.1, se retoma para ejemplificar el método de localización óptima de mediciones revisado en este capítulo. Al realizar un estudio de estimación de estado, lo ideal sería contar con la mayor cantidad de mediciones, formando sistemas sobredeterminados, como el de la Figura 4.1.

Figura 4.1. Esquema de Medición para el Sistema Eléctrico de Distribución 11 Nodos, Caso Base.

Esta figura muestra una medición de voltaje en el nodo uno y mediciones de flujo e inyección de potencia activa y reactiva en todas las ramas y nodos del sistema, por lo tanto el n.m > n.v.e.

Partiendo de esta suposición se hace la selección aleatoria de esquemas de mediciones, indicando solo el número, tipo y posición de estas. Para este caso de estudio se obtienen nueve submuestras a partir de la Figura 4.1 con las restricciones siguientes:

- Cada submuestra debe de tener un *n*. *m* = *n*. *v*. *e*, (submuestras con cero grados de libertad)
- No debe de haber mediciones repetidas en una misma submuestra.

Los subsistemas con cero grados de libertad formados aleatoriamente se resuelven con el algoritmo EERD y las mediciones son tomadas de la Tabla 4.1, recordando que todas estas mediciones se adquieren de un estudio de flujos de potencia previo y datos del sistema, ya que la Figura 4.1 se toma como sistema base.

	Medición de Inyección de Potencia								
No	obe	Fase	"A"	Fase	e "B"	Fase	Fase "C"		
110	Juo	$\mathbf{P}_{\mathbf{L}}$	$\mathbf{Q}_{\mathbf{L}}$	PL	Q_{L}	PL	Q_{L}		
		(kW)	(kVar)	(kW)	(kVar)	(kW)	(kVar)		
	1	-	-	-	-	-	-		
	2	201.0	115.0	225.5	129.0	251.0	144.0		
	3	-	-	170.0	125.0	80.0	68.0		
4	4	160.0	115.0	125.0	80.0	151.0	90.0		
4	5	160.0	110.0	120.0	90.0	120.0	90.0		
(6	-	-	230.0	132.0	80.0	60.0		
,	7	0.0	0.0	0.0	0.0	0.0	0.0		
5	8	0.0	0.0	0.0	0.0	0.0	0.0		
9	9	90.0	60.0	90.0	60.0	90.0	50.0		
1	0	-	-	-	-	170.0	80.0		
1	1	128.0	86.0	-	-	-	-		
					•	•	• 		
				Medición de Fl	ujo de Potencia	l			
No	dos	Fase	"A"	Fase	e "B"	Fase "C"			
р	q	P _{pq} (kW)	Q _{pq} (kVar)	P _{pq} (kW)	Q _{pq} (kVar)	P _{pq} (kW)	Q _{pq} (kVar)		
1	2	755.610	520.620	986.280	684.490	962.470	657.520		
2	3	-	-	407.130	262.800	160.120	128.940		
2	4	380.680	272.190	214.790	141.440	418.170	231.720		
2	5	160.360	110.550	120.180	90.300	120.330	90.277		
3	6	_	-	231.120	132.930	80.000	60.112		
4	7	129.110	86.669	-	-	171.140	80.933		
4	8	0.0	0.0	0.0	0.0	0.0	0.0		
4	9	90.109	60.082	90.103	60.078	90.089	50.097		
7	10	-	-	-	-	170.530	80.536		
7	11	128.930	86.353	-	-	-	-		
				• 	• 	• 	• 		
N	de			Medición	de Voltaje				
TNO	Juo	Fase	"A"	Fase	e "B"	Fase "C"			
		$ V_A $ (Volts)		(Volts)	$ V_c $ ((Volts)		
	1	240	1.77	240	1.77	240	1.77		
1	- No hay medición.								

Tabla 4.1. Mediciones para el Sistema Eléctrico de Distribución 11 Nodos, Caso Base.

Las nueve submuestras encontradas tienen los esquemas de medición que se muestran en la Figura 4.2. Los nueve vectores de estado estimados se puede observar en el Apéndice C.

Figura 4.2. Esquemas de Medición para las 9 Submuestras, Caso 1.

Las normas para estas submuestras que se obtuvieron conforme a la metodología descrita en este capítulo, se escriben en la Tabla 4.2.

Numero de Submuestras	Fase "a"	Fase "b"	Fase "c"
1	0.00167	0.04678	0.00154
2	0.00157	0.04680	0.00146
3	0.00008	0.00003	0.00005
4	0.00008	0.01637	0.00010
5	0.00003	0.01632	0.00007
6	0.00003	0.00002	0.00008
7	0.00006	0.00000	0.00002
8	0.00010	0.01632	0.00010
9	0.00108	0.02821	0.00087

Tabla 4.2. Normas para las Submuestras del Sistema de Prueba Caso 1.

Para determinar el conjunto óptimo de mediciones de acuerdo a la ecuación (4.14) y Tabla 4.2. La solución resulta ser la submuestra número siete ya que la norma mínima es cero correspondiente a la fase "b", lo que indica que el vector de estado obtenido para esta submuestra es el más cercano al vector de estado base. Por lo tanto en la Figura 4.3 se muestran las mediciones óptimas.

Figura 4.3. Esquema de Mediciones Óptimas del Sistema de Prueba Caso 1.

Las mediciones mostradas en la Figura 4.3 son las mínimas necesarias para ejecutar el EERD que se desarrolló en este trabajo y con estas se llega a unos voltajes complejos nodales más precisos, por lo tanto es la solución óptima para este caso de estudio 1.

4.3.2 Sistema de Prueba Caso 2. Error Sustancial en una Rama Trifásica.

Las condiciones de prueba para este caso 2 son similares al caso 1, refiriéndose a que es el mismo sistema de distribución de la Figura 4.1. Sin embargo ahora se simulan tres errores sustanciales en las mediciones de flujo de potencia activa en una rama trifásica conectada entre el nodo uno y dos, simulando un error en la medición.

Comenzando con el algoritmo, se encuentran nueve submuestras aleatorias con las mismas restricciones que se mencionaron para el caso 1. Los esquemas de medición derivados de la selección aleatoria se muestran en la Figura 4.4, a su vez estas submuestras son resueltas con el algoritmo EERD y los nueve vectores de estado estimados se pueden observar en el Apéndice C.

Submuestra 7, Número y Tipo de Mediciones: 10,4●,6▲	Submuestra 8, Número y Tipo de Mediciones: 10, 7●,3▲
$ \begin{array}{c} $	$ \begin{array}{c c} & A & B & C \\ & & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	$\begin{array}{c} & & \\$
Submuestra 9, Número y Tipo de Mediciones: 10,6●,4▲	Resumen de las submuestras y conteo de mediciones.
	Submuestra 1 (mediciones = 3 de voltaje, 36 de flujo y
MEDICION DE FLUJO DE POTENCIA (Pij y Qij)	10 de inyección potencia activa y reactiva)
▲ MEDICION DE INYECCION DE POTENCIA (PL y QL)	Submuestra 2 (mediciones = 3 de voltaje, 30 de flujo y 16 de inyección potencia activa y reactiva)
	Submuestra 3 (mediciones = 3 de voltaje, 20 de flujo y
	26 de inyección potencia activa y reactiva)
	Submuestra 4 (mediciones = 3 de voltaje, 26 de flujo y
	20 de inyección potencia activa y reactiva)
	Submuestra 5 (mediciones = 3 de voltaje, 28 de flujo y 10^{-1}
	18 de inyección potencia activa y reactiva)
9 4 7	Submuestra o (mediciones = 5 de voltaje, 40 de fiujo y o de invesción, potencia activa y resectiva)
	Submuestra 7 (mediciones $=$ 3 de voltaie 22 de fluio v
	24 de invección potencia activa y reactiva)
	Submuestra 8 (mediciones = 3 de voltaie -78 de fluio v
	Submuestra 8 (mediciones = 3 de voltaje, 28 de flujo y 18 de invección potencia activa y reactiva)
▲ ↓ ↓ ↓ ↓	Submuestra 8 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva) Submuestra 9 (mediciones = 3 de voltaje, 22 de flujo y

Figura 4.4. Esquemas de Medición para las 9 Submuestras, Caso 2.

Las normas para las submuestras de la Figura 4.4 se escriben en la tabla siguiente.

Numero de Submuestras	Fase "a"	Fase "b"	Fase "c"
1	15.1122	19.7256	19.2494
2	0.00113	0.02821	0.00089
3	0.00160	0.04679	0.00152
4	15.1122	19.7255	19.2494
5	15.1122	19.7256	19.2494
6	15.1122	19.7256	19.2494
7	15.1122	19.7256	19.2494
8	15.1122	19.7255	19.2494
9	0.00104	0.02823	0.00083

Tabla 4.3. Normas para las Submuestras del Sistema de Prueba Caso 2.

El conjunto óptimo de mediciones resulta ser el de la submuestra nueve, la Figura 4.5 lo esquematiza. Por otro lado en este caso de estudio seis submuestras de las nueve tienen valores de normas altas e iguales, debido a que contienen la medición con el error sustancial, al observar la Figura 4.4 se aprecia esto, lo que provoca que el vector de estado estimado también contenga el error, revisar el Apéndice C para corroborar esto.

Figura 4.5. Esquema de Mediciones Óptimas del Sistema de Prueba Caso 2.

El resultado obtenido es aceptable, aun con el error sustancial en la rama trifásica ya que tal error provoca que las normas en las tres fases sean de valor alto, y el criterio para llegar al resultado óptimo de las ecuaciones (4.13) y (4.14) funciona.

Sin embargo se analizan dos casos de estudio más, provocando el error sustancial ahora en una rama bifásica y monofásica para revisar la funcionalidad del algoritmo en estudio.

4.3.3 Sistema de Prueba Caso 3. Error Sustancial en una Rama Bifásica.

Dos errores sustanciales en las mediciones de flujo de potencia activa en una rama bifásica conectada entre el nodo dos y tres de la Figura 4.1, son simulados para este caso de estudio.

De igual manera nueve submuestras aleatorias son obtenidas, sus esquemas de medición se encuentran en la Figura 4.6.

En el Apéndice C, se pueden revisar los nueve vectores de estado estimados para estas submuestras que se obtuvieron con el algoritmo EERD.

Submuestra 7, Número y Tipo de Mediciones:10, 6●,4▲	Submuestra 8, Número y Tipo de Mediciones:10, 6●, 4▲
WEDICION DE VOLTAJE MEDICION DE FLUJO DE POTENCIA (Pij y Qij) MEDICION DE INVECCION DE POTENCIA (Pi, y Qi) MEDICION DE INVECCION DE POTENCIA (Pi, y Qi) MEDICION DE INVECCION DE POTENCIA (Pi, y Qi) ABC ABC ABC ABC ABC ABC ABC ABC	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $
Submuestra 9, Número y Tipo de Mediciones:10, 6●,4▲	Resumen de las submuestras y conteo de mediciones.
	Submuestra 1 (mediciones = 3 de voltaje, 20 de flujo y
MEDICION DE FLUJO DE POTENCIA (Pij y Qij)	26 de inyección potencia activa y reactiva)
MEDICION DE INYECCION DE POTENCIA (PL y QL)	Submuestra 2 (mediciones = 3 de voltaje, 16 de flujo y 30 de inyección potencia activa y reactiva)
	Submuestra 3 (mediciones = 3 de voltaje, 20 de flujo y
	26 de inyección potencia activa y reactiva)
	Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y
\Rightarrow A B C \Rightarrow \Rightarrow	28 de inyección potencia activa y reactiva)
	Submuestra 5 (mediciones = 3 de voltaje, 22 de flujo y
	24 de inyección potencia activa y reactiva)
	Submuestra 6 (mediciones = 3 de voltaje, 6 de flujo y 40
	de inyección potencia activa y reactiva)
	Submuestra / (mediciones = 3 de voltaje, 26 de flujo y $20 de invesción, potencia estiva y resoltiva)$
	20 de invection potencia activa y reactiva) Submuestre 8 (mediciones $= 2$ de volteie 28 de fluie y
	submucsula o (incurciones $=$ 5 de voltaje, 26 de Ilujo y 18 de invección, potencia activa y reactiva)
▲	Submuestra 9 (mediciones -3 de voltaje 28 de fluio v
3Ф 👃	18 de invección potencia activa y reactiva)

Figura 4.6. Esquemas de Medición para las 9 Submuestras, Caso 3.

La Tabla 4.4 contiene las normas que se calcularon para las submuestras de la Figura 4.6.

Numero de Submuestras	Fase "a"	Fase "b"	Fase "c"
1	0.00008	8.12616	3.20241
2	0.00156	0.04680	0.00146
3	0.00008	0.01637	0.00009
4	0.00009	0.01637	0.00009
5	0.21564	11.57088	4.46552
6	0.00157	0.04681	0.00155
7	0.00007	0.01637	0.00008
8	0.00010	8.12616	3.20241
9	0.00006	0.01637	0.00008

Tahla	44	Normas	nara l	as Si	uhmuestras	del	Sistema	de	Prueba	Caso	2
I abla	4.4.	numas	para i	as 5	unnuesuas	uei	Sistema	ue	TTUEDa	Casu.	э.

Siguiendo el procedimiento para encontrar el conjunto óptimo de mediciones, resulta que la submuestra nueve es la respuesta, ya que presenta el valor mínimo según la Tabla 4.4 esto en la fase "a".

Tres submuestras la uno, cinco y ocho contienen la medición errónea, por lo tanto los valores de las nomas para las fases "b" y "c" resultan incrementarse, descartándose estas submuestras para considerarse como una solución.

La Figura 4.7 ilustra el conjunto óptimo de mediciones, correspondiente a la submuestra nueve.

Figura 4.7. Esquema de Mediciones Óptimas del Sistema de Prueba Caso 3.

4.3.4 Sistema de Prueba Caso 4. Error Sustancial en una Rama Monofásica.

Un error sustancial en la medición de flujo de potencia activa en una rama monofásica conectada entre el nodo siete y diez se simula para este caso 4, y se mantiene el mismo sistema de distribución base de la Figura 4.1. Las nueve submuestras aleatorias encontradas bajo las mismas restricciones planteadas en el caso 1 se ilustran en la Figura 4.8.

Al igual que en los casos anteriores en el Apéndice C, se muestran los vectores de estado para las nueve submuestras de la Figura 4.8, calculados con el algoritmo EERD.

Submuestra 7, Número y Tipo de Mediciones:10, $5 \bullet, 5 \blacktriangle$	Submuestra 8, Número y Tipo de Mediciones:10, 3●, 7▲			
$ \begin{array}{c} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ $ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} } \\ } } \\ } } \\ } } } } } } } } } } }			
Submuestra 9, Número y Tipo de Mediciones:10, 6●,4▲	Resumen de las submuestras y conteo de mediciones.			
∏v ABC 1 UMEDICION DE VOLTAJE	Submuestra 1 (mediciones = 3 de voltaje, 32 de flujo y 14 de inversión potencia estiva y prosting)			
 MEDICION DE FLUJO DE POTENCIA (Pij y Qij) ▲ MEDICION DE INYECCION DE POTENCIA (PL y QL) 	Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y			
C B B B B B B B B B B B B B B B B B	Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva)			
MEDICION DE FLUJO DE POTENCIA (Pij y Qij) MEDICION DE INYECCION DE POTENCIA (Pi y Qi) B B C C	Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva) Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva)			
MEDICION DE FLUJO DE POTENCIA (Pij y Qij) MEDICION DE INYECCION DE POTENCIA (Pi y Qi) B B C 2 2 2 3 6	14 de inyección potencia activa y reactiva) Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva) Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva) Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y			
MEDICION DE FLUJO DE POTENCIA (Pij y Qij) MEDICION DE INVECCION DE POTENCIA (Pi y Qi) MEDICION DE INVECCION DE POTENCIA (Pi y Qi) B C B C C A B C 2 2 2 2 2 2 2 2 2 2 2 3 5 6	14 de inyección potencia activa y reactiva) Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva) Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva) Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y 28 de inyección potencia activa y reactiva)			
$\begin{array}{c} \bullet \text{ MEDICION DE FILUO DE POTENCIA (Pij y Qij)} \\ \bullet \text{ MEDICION DE INYECCION DE POTENCIA (Pi y Qi)} \\ \bullet \text{ MEDICION DE INYECCION DE INYECCION DE POTENCIA (Pi y Qi)} \\ \bullet MEDICION DE INYECCION DE INYECCION$	14 de inyección potencia activa y reactiva) Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva) Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva) Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y 28 de inyección potencia activa y reactiva) Submuestra 5 (mediciones = 3 de voltaje, 20 de flujo y 26 de flujo y			
MEDICION DE FLUJO DE POTENCIA (Pij y Qij) MEDICION DE INYECCION DE POTENCIA (Pi y Qi) MEDICION DE INYECCION DE POTENCIA (Pi y Qi) A MEDICION DE INYECCION DE INYECCION DE POTENCIA (Pi y Qi) A MEDICION DE INYECCION DE	14 de Inyección potencia activa y reactiva) Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva) Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva) Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y 28 de inyección potencia activa y reactiva) Submuestra 5 (mediciones = 3 de voltaje, 20 de flujo y 26 de inyección potencia activa y reactiva) Submuestra 5 (mediciones = 3 de voltaje, 20 de flujo y 26 de inyección potencia activa y reactiva)			
MEDICION DE FLUJO DE POTENCIA (Pij y Qij) MEDICION DE INYECCION DE POTENCIA (Pi y Qi) MEDICION DE INYECCION DE POTENCIA (Pi y Qi) A MEDICION DE INYECCION	14 de inyección potencia activa y reactiva) Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva) Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva) Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y 28 de inyección potencia activa y reactiva) Submuestra 5 (mediciones = 3 de voltaje, 20 de flujo y 26 de inyección potencia activa y reactiva) Submuestra 6 (mediciones = 3 de voltaje, 16 de flujo y 30 de invección potencia activa y reactiva)			
MEDICION DE FLUJO DE POTENCIA (Pij y Qij) MEDICION DE INYECCION DE POTENCIA (Pi y Qi) MEDICION DE INYECCION DE POTENCIA (Pi y Qi) ABC C ABC C ABC C ABC C ABC C ABC C ABC C ABC C ABC C ABC C ABC C ABC C ABC C ABC C A A C A A C A A A A A A A A A A A A A	14 de inyección potencia activa y reactiva) Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva) Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva) Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y 28 de inyección potencia activa y reactiva) Submuestra 5 (mediciones = 3 de voltaje, 20 de flujo y 26 de inyección potencia activa y reactiva) Submuestra 6 (mediciones = 3 de voltaje, 16 de flujo y 30 de inyección potencia activa y reactiva) Submuestra 7 (mediciones = 3 de voltaje, 24 de flujo y			
$\begin{array}{c} \bullet \text{ MEDICION DE FILUJO DE POTENCIA (Pij y Qij)} \\ \bullet \text{ MEDICION DE INYECCION DE POTENCIA (Pi y Qi)} \\ \hline \\ $	14 de Inyección potencia activa y reactiva) Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva) Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva) Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y 28 de inyección potencia activa y reactiva) Submuestra 5 (mediciones = 3 de voltaje, 20 de flujo y 26 de inyección potencia activa y reactiva) Submuestra 6 (mediciones = 3 de voltaje, 16 de flujo y 30 de inyección potencia activa y reactiva) Submuestra 7 (mediciones = 3 de voltaje, 24 de flujo y 22 de inyección potencia activa y reactiva)			
$\begin{array}{c} \bullet \text{ MEDICION DE FILUJO DE POTENCIA (Pij y Qij)} \\ \bullet \text{ MEDICION DE INYECCION DE POTENCIA (Pi y Qi)} \\ \hline \\ $	14 de inyección potencia activa y reactiva) Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva) Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva) Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y 28 de inyección potencia activa y reactiva) Submuestra 5 (mediciones = 3 de voltaje, 20 de flujo y 26 de inyección potencia activa y reactiva) Submuestra 6 (mediciones = 3 de voltaje, 16 de flujo y 30 de inyección potencia activa y reactiva) Submuestra 7 (mediciones = 3 de voltaje, 24 de flujo y 22 de inyección potencia activa y reactiva) Submuestra 8 (mediciones = 3 de voltaje, 16 de flujo y			
$\begin{array}{c} \bullet \text{ MEDICION DE FILUJO DE POTENCIA (Pij y Qij)} \\ \bullet \text{ MEDICION DE INYECCION DE POTENCIA (Pi y Qi)} \\ \hline \\ $	14 de inyección potencia activa y reactiva) Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y 12 de inyección potencia activa y reactiva) Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y 18 de inyección potencia activa y reactiva) Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y 28 de inyección potencia activa y reactiva) Submuestra 5 (mediciones = 3 de voltaje, 20 de flujo y 26 de inyección potencia activa y reactiva) Submuestra 6 (mediciones = 3 de voltaje, 16 de flujo y 30 de inyección potencia activa y reactiva) Submuestra 7 (mediciones = 3 de voltaje, 24 de flujo y 22 de inyección potencia activa y reactiva) Submuestra 8 (mediciones = 3 de voltaje, 16 de flujo y 30 de inyección potencia activa y reactiva)			
$\begin{array}{c} \bullet \text{ MEDICION DE FILUO DE POTENCIA (Pij y Qij)} \\ \bullet \text{ MEDICION DE INYECCION DE POTENCIA (Pi y Qi)} \\ \hline \\ $	14 de Inyección potencia activa y reactiva)Submuestra 2 (mediciones = 3 de voltaje, 34 de flujo y12 de inyección potencia activa y reactiva)Submuestra 3 (mediciones = 3 de voltaje, 28 de flujo y18 de inyección potencia activa y reactiva)Submuestra 4 (mediciones = 3 de voltaje, 18 de flujo y28 de inyección potencia activa y reactiva)Submuestra 5 (mediciones = 3 de voltaje, 20 de flujo y26 de inyección potencia activa y reactiva)Submuestra 6 (mediciones = 3 de voltaje, 16 de flujo y30 de inyección potencia activa y reactiva)Submuestra 7 (mediciones = 3 de voltaje, 24 de flujo y22 de inyección potencia activa y reactiva)Submuestra 8 (mediciones = 3 de voltaje, 16 de flujo y30 de inyección potencia activa y reactiva)Submuestra 8 (mediciones = 3 de voltaje, 24 de flujo y30 de inyección potencia activa y reactiva)Submuestra 8 (mediciones = 3 de voltaje, 26 de flujo y30 de inyección potencia activa y reactiva)Submuestra 8 (mediciones = 3 de voltaje, 16 de flujo y30 de inyección potencia activa y reactiva)Submuestra 9 (mediciones = 3 de voltaje, 28 de flujo y			

Figura 4.8. Esquemas de Medición para las 9 Submuestras, Caso 4.

Las normas calculadas para las submuestras de la Figura 4.8 se escriben a continuación.

Numero de Submuestras	Fase "a"	Fase "b"	Fase "c"
1	0.00004	0.00002	3.41059
2	0.00007	0.00003	3.41059
3	0.00113	0.02821	0.00089
4	0.00160	0.04678	0.00156
5	0.00012	0.00004	0.00005
6	0.00112	0.02819	0.00086
7	0.00011	0.01637	3.41059
8	0.00157	0.04672	0.00143
9	0.00008	0.01632	3.41059

Tabla 4.5. Normas para las Submuestras del Sistema de Prueba Caso 4.

Al seguir las ecuaciones (4.13) y (4.14), para determinar el conjunto óptimo de mediciones resulta como respuesta la submuestra uno por tener el valor mínimo y corresponde a la fase "b" según la Tabla 4.5, sin embargo la fase "c" presenta un valor de norma referentemente alto, esto es porque en esta submuestra se encuentra la medición con el error sustancial, observar la Figura 4.8, por lo tanto no puede ser la respuesta óptima.

Para llegar a una respuesta de este caso 4 se revisa la Tabla 4.5, buscando que el valor mínimo de las normas sea para las tres fases. Haciendo esto la solución es la submuestra cinco, y su conjunto de mediciones es el óptimo, obviamente este conjunto no contiene el error sustancial, en la Figura 4.9 se muestra la solución hallada.

Figura 4.9. Esquema de Mediciones Óptimas del Sistema de Prueba Caso 4.

4.4 Análisis de Resultados.

Las nueve submuestras aleatorias encontradas para los cuatro casos de estudio revisados en este capítulo cuentan con un número mínimo de mediciones necesarias para ejecutar el algoritmo de EERD que se desarrolló en este trabajo. Resultan ser submuestras con cero grados de libertad, con una medición fija de voltaje en el nodo uno y mediciones de flujo e inyección de potencia activa y reactiva cambiando, en cuanto al número y posición de estas.

Sistema de Prueba Caso 1.

La solución hallada se muestra en la Figura 4.3, donde la mayoría de mediciones son de flujo de potencia y con estas se obtiene la norma mínima, lo que hace notar que con este tipo de mediciones se llega a una mejor estimación de estado.

Por otro lado, en este caso de estudio el valor de cero de la norma mínima se da debido a la pequeña ponderación que se manejó para estas mediciones.

Sistema de Prueba Caso 2. Error Sustancial en una Rama Trifásica.

El error sustancial en la rama trifásica provoca que el valor de las normas para las tres fases sea de un valor alto, esto para todas las submuestras que contengan la medición con este error, mientras que las normas mínimas resultan de conjuntos de mediciones que no contienen la medición errónea, por lo tanto el criterio para encontrar la solución óptima mediante las ecuaciones (4.13) y (4.14) funciona adecuadamente en este caso de estudio, llegando a la solución mostrada en la Figura 4.5.

Sistema de Prueba Caso 3. Error Sustancial en una Rama Bifásica.

Debido al desbalance entre fases y configuración de líneas del sistema de distribución, las submuestras que contienen el error sustancial en la rama bifásica, solo presentan un valor alto de la norma en las fases que contienen el error, mientras que la fase restante puede pasar como resultado óptimo usando el criterio establecido. El error se simulo en un lateral bifásico, específicamente no contiene la fase "a" lo que provocó que al buscar el conjunto óptimo de mediciones se basó en el valor de la norma para la fase "a", arrojando el conjunto óptimo de mediciones ilustrado en la Figura 4.7.

Sistema de Prueba Caso 4. Error Sustancial en una Rama Monofásica.

Este caso de estudio tiene como conjunto óptimo de mediciones el mostrado en la Figura 4.9, el cual tampoco presenta la medición errónea. El criterio para escoger dicha solución fue diferente al planteado por las ecuaciones (4.13) y (4.14), ya que se busco que la norma mínima fuera para las tres fases, dando como resultado la submuestra cinco según la Tabla 4.5.

Con estos casos de estudio se puso a prueba el algoritmo desarrollado en este capítulo, con el cual se obtiene un conjunto óptimo de mediciones, e incluso se llega a una respuesta óptima si se tiene un error en la medición que afecte las tres fases, pero si el error se presenta en una rama bifásica o monofásica se debe revisar el criterio para encontrar la respuesta óptima según lo que se ha revisado en los casos 3 y 4. A lo largo de los casos de estudio que se analizaron se tienen submuestras o subsistemas con esquemas de medición en los que se manejan es su mayoría inyecciones de potencia nodales y pocos flujos de potencia como el de la Figura 4.9, mostrando que se puede ejecutar el algoritmo de EERD en casos donde no se contara con suficientes mediciones de flujo de potencia o voltaje, si no que simplemente con datos de carga que se pueden obtener de datos históricos o una asignación de carga previa.

CAPÍTULO 5

CONCLUSIONES.

5.1 Conclusiones.

En este trabajo se utilizó el método de mínimos cuadrados ponderados para realizar la estimación de estado en sistemas eléctricos de distribución radiales de manera similar como se realiza en los sistemas de potencia, con la diferencia que se trabaja en forma trifásica y además se emplean las técnicas de barridos progresivos regresivos que comúnmente se manejan en los estudios de flujos de potencia para los sistemas de distribución. Resulta ser muy práctico el uso de estas técnicas ya que permiten el fácil manejo en cuanto a las matrices Jacobianas y de Ganancia que se forman durante el algoritmo ya que no resultan ser dispersa ni de gran tamaño, facilitando del algoritmo; el cálculo y la programación en el compilador, ya que no se requirió de técnicas computacionales de empaquetamientos de matrices.

Se observó la validez y eficacia de realizar la estimación de estado por ramas en los casos de estudio, ya que los vectores de estado que se obtuvieron se aproximan en gran medida a los voltajes complejo nodales base, recordando que estos valores para el sistema base se obtuvieron a partir de los cálculos de flujos de potencia.

La falta de datos estadísticos para ser manejados como pseudo-mediciones en los sistemas de prueba llevo al no plantearse ni manejarse estos datos.

Para efectuar la estimación de estado que se desarrolló en este trabajo prácticamente debe de contar con mediciones de flujo o inyección de potencia activa y reactiva en todas las ramas del sistema para garantizar la observabilidad topológica y numérica de la red, por lo tanto hacer una asignación de carga previa, es la manera de solucionar el problema de observabilidad.

La localización óptima de mediciones se basa prácticamente en el planteamiento de la norma, encontrando un conjunto de mediciones que estima un vector de estado y acerca al vector base con un error muy despreciable.

Se estableció como criterio para obtener una solución, que las normas que tiendan a cero determinarán el conjunto óptimo de mediciones.

Por otro lado con este método se podrían detectar mediciones erróneas, ya que las normas con errores en las mediciones tienden a crecer y no a cero. Esto se concluye a partir de los casos de estudios en los que se simularon errores sustanciales en una rama trifásica, bifásica y monofásica.

Se tiene una herramienta computacional para analizar los sistemas eléctricos de distribución radial, obteniendo su vector de estado y con este realizar algunos tipos de cálculos como flujos, perdidas en las ramas, etc. También con esta herramienta se indica que conjunto de mediciones es el óptimo para llegar a un vector de estado más preciso, todo esto para sistemas de prueba ciertamente pequeños quedando pendiente ejecutar el algoritmo completo con sistemas más reales.

5.2 Trabajos Futuros.

A continuación se presentan algunas recomendaciones para trabajos futuros relacionados con esta tesis.

- Desarrollar otra metodología de estimación de estado para comparar con la desarrollada en este trabajo.
- Aplicar otros sistemas de prueba, sistemas de distribución más grandes con distintos tipos de mediciones.
- Los algoritmos relacionados con la estimación de estado como el análisis de observabilidad e identificación de mediciones erróneas, plantearlos junto con este trabajo.
- Una asignación de carga realizarla en primera instancia para obtener mediciones y utilizarlas posteriormente en el algoritmo de estimación de estado.
- Desarrollar una estimación de estado en tiempo real.
- Con las mediciones de consumo de demanda en los consumidores de las redes de distribución buscar una manera de utilizar esta medición para realizar la estimación de estado.
- Las nuevas tecnologías en especifico las unidades de medición de fasor (PMU) permite medir ángulos, por lo que es interesante utilizar estos datos obtenidos con estos equipos para realizar la estimación de estado.

REFERENCIAS.

- [1] Abur Ali, Gómez Expósito Antonio, "*Power System State Estimation: Theory and Implementation*", Ed. Marcel Dekker, Inc., 2004.
- [2] Meliopoulos A. P. S. and Zhang F., "Multiphase Power Flow and State Estimation for Power Distribution Systems", IEEE Trans. Power Syst., Vol. 11, pp. 939–946, May 1996.
- [3] Das D, Nagi H. S., Kothari D. P., "*Novel Method for Solving Radial Distribution Networks*", IEE Proc Gener. Transm. Distrib,. Vol. 141, No. 4, July 1991.
- [4] Cheng Carol S., Shirmohammadi D., "A Three-Phase Power Flow Method For Real-Time Distribution System Analysis", IEEE Transactions on Power Systems. Vol. 10, No. 2, May 1995.
- [5] Wood Allen J., Wollenberg Bruce F., "*Power Generation, Operation and Control*", Ed. John Wiley and Sons, Inc., 1984, pp.453-512.
- [6] Schweppe Fred C, Wildes J, "*Power System Static-State Estimation*", pt. I, II, III, IEEE Transactions on Power Apparatus and Systems, Vol. 1, pp. 89, January 1970.
- [7] Li K., "State Estimation for Power Distribution System and Measurement Impacts," IEEE Trans. Power Syst., Vol. 11, pp. 911–916, May 1996.
- [8] Lu C. N., Teng J. H., and Liu W. H. E., "*Distribution System State Estimation*," IEEE Trans. Power Syst., Vol. 10, pp. 229–240, Feb. 1995.
- [9] Baran Mesut E., Kelley Arthur W., "State Estimation for Real-Time Monitoring of Distribution Systems", IEEE Transactions on Power Systems, Vol. 9, No. 3, pp. 1601-1609, August 1994.
- [10] Baran Mesut E., Kelley Arthur W., "A Branch-Current-Based State Estimation Method for Distribution Systems", IEEE Transactions on Power Systems, Vol. 10, No. 1, February 1995.

- [11] Roytelman I., Shahidehpour S. M., "State Estimation for Electric Power Distribution Systems in Quasi Real-Time Conditions", IEEE Transactions on Power Delivery, Vol. 8, No. 4, October 1993.
- [12] Lin Whei-Min, Teng Jen-Hao, "State Estimation for Distribution Systems with Zero-Injection Constraints", IEEE Transactions on Power Systems, Vol. 11, No. 1, February 1996.
- [13] Hansen C. W., Debs A. S., "Power System State Estimation Using Three-phase Models", IEEE Transactions on Power Systems, Vol. 10, No. 2, May 1995.
- [14] Baran Mesut E., "*Challenges in State Estimation on Distribution Systems*", Department of ECE, North Carolina State University, IEEE, 2001.
- [15] Singh R., Pal B.C. and Jabr R.A, "*Choice of Estimator for Distribution System State Estimation*," IET, Gener. Transm. Distrib. Vol. 3, pp. 666–678, Dec 2008.
- [16] Singh R., Pal B.C. and Jabr R.A, "Distribution System State Estimation Through Gaussian Mixture Model of the Load as Pseudo-Measurement", IET Gener. Transm. Distrib., 2010, Vol. 4, Iss. 1, pp. 50–59.
- [17] Deng Y., He Ying, Zhang B., "Branch-Estimation-Based Estimation for Radial Distribution Systems", IEEE Transactions on Power Systems. Vol. 17, No. 4, October 2002.
- [18] Benemar A. de Souza, Andréa A. Sousa, "State Estimation of Distribution Network Using Simulated Annealig", C I R E D 18th International Conference on Electricity Distribution Turin, 6-9 June 2005.
- [19] Dan Apetrei, Ioan Silvas, Mihaela Albu, Petru Postolache, Ralf Neurohr, "Voltage Estimation in Power Distribution Networks. A Case Study on Data Aggregation and Measurement Uncertainty", AMUEM 2009 – International Workshop on Advanced Methods for Uncertainty Estimation in Measurement Bucharest, Romania, 6-7 July 2009.
- [20] Sakis Meliopoulos P., Cokkinides George J., Galvan Floyd, Fardanesh Bruce, "Distributed State Estimator – Advances and Demonstration", Proceedings of the 41st Hawaii International Conference on System Sciences – 2008.

- [21] Yaghoti A. A., Parsa M., Majd Vahid J., "Electrical Distribution Networks State Estimation", C I R E D 18th International Conference on Electricity Distribution Turin, 6 -9 June 2005.
- [22] Hoffman Roy, "*Practical State Estimation for Electric Distribution Networks*", IEEE, Transactions on Power Delivery, 2006.
- [23] Lubkeman David L., Zhang Jianzhong, Ghosh Atish K., Jones Robert H., "Field Results for a Distribution Circuit State Estimator Implementation", IEEE Transactions on Power Delivery, Vol. 15, No. 1, January 2000.
- [24] Gallardo Ortiz Ricardo. "Estimación de Estado en Sistemas Eléctricos de Distribución Desbalanceados Aplicando la Técnica de Mínimos Cuadrados", Instituto Tecnológico de Morelia, Tesis de Maestría, Morelia Michoacán, Diciembre 1998.
- [25] Monticelli A. "*Electric Power System State Estimation*" IEEE Transactions on Power Delivery, Vol. 88, No. 2, February 2000.
- [26] Michel Hernández Hazel Yurai. "Estimación de Estado por Mínimos Cuadrados Ponderados en Sistemas de Potencia Empleando el Método de Newton", Instituto Politécnico Nacional, Tesis de Maestría, México D.F, Junio 2009.
- [27] Thukaram D., Jerome Jovitha, Surapong C. "A Robust Three-Phase State Estimation Algorithm Distribution Networks", Elsevier Science S.A.November 1999.
- [28] Kersting William H., "*Distribution System Modeling and Analysis*", Ed. Taylor and Francis Group. Inc 2002, pp. 77.
- [29] Ghosh A. K., Lubkeman D. L., Jones R. H. "Load Modeling for Distribution Circuit State Estimation", IEEE Trans. PWR. Vol. 12, No. 2, April 1997, pp. 999-1005.
- [30] Wan Jie, Miu Karen Nan, "Weighted Least Squares Methods for Load Estimation in Distribution Networks", IEEE Transactons on Power Systems, Vol. 18, no. 4, November 2003.
- [31] Wang Haibin, Schulz Noel N., "A Load Modeling Algorithm for Distribution System State Estimation", IEEE Transactions on Power Systems, 2001.
- [32] IEEE Distribution System Analysis Subcommittee, "*Radial Test Feeders, IEEE 13 Node Test Feeder*", IEEE Transactions on Power Systems, 2001.

- [33] IEEE Distribution System Analysis Subcommittee, "*Radial Test Feeders, IEEE 37 Node Test Feeder*", IEEE Transactions on Power Systems, 2001.
- [34] Wang Haibin, Schulz Noel N., "A Revised Branch Current-Based Distribution System State Estimation Algorithm and Meter Placement Impact", IEEE Transactions on Power Systems, Vol. 19, No. 1, February 2004.
- [35] Singh Ravindra, Pal Bikash C., Vinter Richard B., "Measurement Placement in Distribution System State Estimation", IEEE Transactions on Power Systems, Vol. 24, No. 2, May 2009.
- [36] Robles García Jaime, "Técnicas Avanzadas para Estimación Robusta en Sistemas Eléctricos de Potencia Utilizando el Método de la Mediana Mínima Cuadrada", Instituto Politécnico Nacional, Tesis de Doctorado, México D.F, Junio 1996.

APÉNDICE A

EXPRESIONES PARA FORMAR EL JACOBIANO.

En esta tesis se ha definido la estructura y formación que tiene el Jacobiano para llevar a cabo la estimación de estado en sistemas eléctricos de distribución. Este Jacobiano es una matriz cuyos elementos son las derivadas parciales de las mediciones con respecto a las variables de estado, en la sección siguiente se expresan las derivas en forma polar como rectangular.

A.1 Expresiones para Mediciones de Voltaje.

Derivada	as, magnitudes de voltaje.	Derivadas, ángulos de fase				
$\frac{\partial V_k^p}{\partial V_k^p} = 1$	para: p = a, b, c	$\frac{\partial V_k^p}{\partial \delta_k^p} = 0$	para: p = a, b, c			
$\frac{\partial V_k^p}{\partial V_k^q} = 0$	$para: p, q = a, b, c; p \neq q$	$\frac{\partial V_k^p}{\partial \delta_k^q} = 0$	$para: p, q = a, b, c; p \neq q$			
$\frac{\partial V_k^p}{\partial V_m^p} = 0$	para: p = a, b, c	$\frac{\partial V_k^p}{\partial \delta_m^p} = 0$	para: p = a, b, c			
$\frac{\partial V_k^p}{\partial V_m^q} = 0$	$para: p, q = a, b, c; p \neq q$	$\frac{\partial V_k^p}{\partial \delta_m^q} = 0$	$para: p, q = a, b, c; p \neq q$			

Tabla A.1. Derivadas en Forma Polar para Voltaje.

La magnitud de voltaje en forma rectangular se expresa de la siguiente manera

$$|E_k^p|^2 = (e_k^p)^2 + (f_k^p)^2$$
 (A.1)

Por lo tanto las derivas quedan de según la Tabla [A.2]

Derivadas, par	te real del voltaje.	Derivadas, parte imaginaria del voltaje.			
$\frac{\partial E_k^p }{\partial e_k^p} = 2e_k^p$	para: p = a, b, c	$\frac{\left.\frac{\partial\left E_k^p\right ^2}{\partial f_k^p}=2f_k^p\right.$	para: p = a, b, c		
$\frac{\partial \left E_k^p \right ^2}{\partial e_m^p} = 0$	$para: p, q = a, b, c; p \neq q$	$\frac{\partial \left E_k^p \right ^2}{\partial f_m^p} = 0$	$para: p, q = a, b, c; p \neq q$		
$\frac{\partial \left E_k^p \right ^2}{\partial e_k^q} = 0$	para: p = a, b, c	$\frac{\partial \left E_k^p \right ^2}{\partial f_k^q} = 0$	para: p = a, b, c		
$\frac{\partial \left E_k^p \right ^2}{\partial e_m^q} = 0$	$para: p, q = a, b, c; p \neq q$	$\frac{\partial \left E_k^p \right ^2}{\partial f_m^q} = 0$	$para: p, q = a, b, c; p \neq q$		

			-		-	-	
Tabla	A 7 I	Jorivor	og on	Formo	Dootongu	lor noro	Valtaia
I auta	A.4 I	Jerrau	ias en	гоппа	Nectangu	iai vara	vultare.

A.2 Expresiones para Mediciones de Flujo de Potencia.

Tubin filo Defitiunas en l'ornin l'orni para l'hujos de l'otencia.						
Derivadas de Flujos de Potencia "Potencia Real"						
$\frac{\partial P_{km}^p}{\partial V_k^p} = 2V_k^p G_{km}^{pp} - V_m^p Y_{km}^{pp} \cos(\delta_k^p - \delta_m^p - \theta_{km}^{pp}) + \sum_{\substack{q=a\\q\neq p}}^c Y_{km}^{pq} (V_k^q \cos(\delta_k^p - \delta_k^q - \theta_{km}^{pq}) - V_m^q \cos(\delta_k^p - \delta_m^q - \theta_{km}^{pq}))$						
$\frac{\partial P_{km}^p}{\partial V_k^q} = V_k^p Y_{km}^{pq} \cos\left(\delta_k^p - \delta_k^q - \theta_{km}^{pq}\right)$						
$\frac{\partial P_{km}^p}{\partial V_m^p} = -V_k^p Y_{km}^{pp} \cos(\delta_k^p - \delta_m^p - \theta_{km}^{pp})$						
$\frac{\partial P_{km}^p}{\partial V_m^q} = -V_k^p Y_{km}^{pq} \cos\left(\delta_k^p - \delta_m^q - \theta_{km}^{pq}\right)$						
$\frac{\partial P_{km}^p}{\partial \delta_k^p} = V_k^p V_m^p Y_{km}^{pp} sen(\delta_k^p - \delta_m^p - \theta_{km}^{pp}) - V_k^p \left[\sum_{\substack{q=a\\q\neq p}}^c Y_{km}^{pq} (V_k^q sen(\delta_k^p - \delta_k^q - \theta_{km}^{pq}) - V_m^q sen(\delta_k^p - \delta_m^q - \theta_{km}^{pq})) \right]$						
$\frac{\partial P_{km}^{p}}{\partial \delta_{m}^{p}} = -V_{k}^{p}V_{m}^{p}Y_{km}^{pp}sen(\delta_{k}^{p}-\delta_{m}^{p}-\theta_{km}^{pp})$						
$\frac{\partial P_{km}^{p}}{\partial \delta_{k}^{q}} = V_{k}^{p} V_{k}^{q} Y_{km}^{pq} sen(\delta_{k}^{p} - \delta_{k}^{q} - \theta_{km}^{pq})$						
$\frac{\partial P_{km}^{p}}{\partial \delta_{m}^{q}} = -V_{k}^{p}V_{m}^{q}Y_{km}^{pq}sen(\delta_{k}^{p}-\delta_{m}^{q}-\theta_{km}^{pq})$						
Mediciones de Flujos de Potencia "Potencia Reactiva"						
$\frac{\partial Q_{km}^p}{\partial V_k^p} = -2V_k^p B_{km}^{pp} - V_m^p Y_{km}^{pp} sen(\delta_k^p - \delta_m^p - \theta_{km}^{pp}) + \sum_{\substack{q=a\\q\neq p}}^c Y_{km}^{pq} (V_k^q sen(\delta_k^p - \delta_k^q - \theta_{km}^{pq}) - V_m^q sen(\delta_k^p - \delta_m^q - \theta_{km}^{pq}))$						
$\frac{\partial Q_{km}^p}{\partial V_k^q} = V_k^p Y_{km}^{pq} sen(\delta_k^p - \delta_k^q - \theta_{km}^{pq})$						
$\frac{\partial Q_{km}^{p}}{\partial V_{m}^{p}} = -V_{k}^{p}Y_{km}^{pp}sen(\delta_{k}^{p} - \delta_{m}^{p} - \theta_{km}^{pp})$						
$\frac{\partial Q_{km}^{p}}{\partial V_{m}^{q}} = -V_{k}^{p}Y_{km}^{pq}sen(\delta_{k}^{p} - \delta_{m}^{q} - \theta_{km}^{pq})$						
$\frac{\partial Q_{km}^p}{\partial \delta_k^p} = -V_k^p V_m^p Y_{km}^{pp} \cos(\delta_k^p - \delta_m^p - \theta_{km}^{pp}) + V_k^p \left[\sum_{\substack{q=a\\q\neq p}}^c Y_{km}^{pq} (V_k^q \cos(\delta_k^p - \delta_k^q - \theta_{km}^{pq}) - V_m^q \cos(\delta_k^p - \delta_m^q - \theta_{km}^{pq})) \right]$						
$\frac{\partial Q_{km}^p}{\partial \delta_m^p} = V_k^p V_m^p Y_{km}^{pp} \cos(\delta_k^p - \delta_m^p - \theta_{km}^{pp})$						
$\frac{\partial Q_{km}^p}{\partial \delta_k^q} = -V_k^p V_k^q Y_{km}^{pq} \cos(\delta_k^p - \delta_k^q - \theta_{km}^{pq})$						
$\frac{\partial Q_{km}^p}{\partial \delta_m^q} = V_k^p V_m^q Y_{km}^{pq} \cos(\delta_k^p - \delta_m^q - \theta_{km}^{pq})$						

Tabla A.3 Derivadas en Forma Polar para Flujos de Potencia.

Derivadas de Flujos de Potencia "Potencia Real"					
$\frac{\partial P_{km}^{p}}{\partial e_{k}^{p}} = 2e_{k}^{p}G_{km}^{pp} - G_{km}^{pp}e_{m}^{p} + B_{km}^{pp}f_{m}^{p} + \sum_{\substack{q=a\\q\neq p}}^{c}G_{km}^{pq}(e_{k}^{q} - e_{m}^{q}) - B_{km}^{pq}(f_{k}^{q} - f_{m}^{q})$					
$\frac{\partial P_{km}^p}{\partial e_k^q} = G_{km}^{pq} e_k^p + B_{km}^{pq} f_k^p$					
$\frac{\partial P_{km}^p}{\partial e_m^p} = -G_{km}^{pp} e_k^p - B_{km}^{pp} f_k^p$					
$\frac{\partial P_{km}^p}{\partial e_m^q} = -G_{km}^{pq} e_k^p - B_{km}^{pq} f_k^p$					
$\frac{\partial P_{km}^{p}}{\partial f_{k}^{p}} = 2f_{k}^{p}G_{km}^{pp} - G_{km}^{pp}f_{m}^{p} - B_{km}^{pp}e_{m}^{p} + \sum_{\substack{q=a\\q\neq p}}^{c}G_{km}^{pq}(f_{k}^{q} - f_{m}^{q}) - B_{km}^{pq}(e_{k}^{q} - e_{m}^{q})$					
$\frac{\partial P_{km}^p}{\partial f_m^p} = -G_{km}^{pp} f_k^p + B_{km}^{pp} e_k^p$					
$\frac{\partial P_{km}^p}{\partial f_k^p} = G_{km}^{pq} f_k^p - B_{km}^{pq} e_k^p$					
$\frac{\partial P_{km}^p}{\partial f_m^q} = -G_{km}^{pq} f_k^p + B_{km}^{pq} e_k^p$					
Mediciones de Flujos de Potencia "Potencia Reactiva"					
$\frac{\partial Q_{km}^{p}}{\partial e_{k}^{p}} = -2e_{k}^{p}B_{km}^{pp} + G_{km}^{pp}f_{m}^{p} + B_{km}^{pp}e_{m}^{p} + \sum_{\substack{q=a\\q\neq p}}^{c} -G_{km}^{pq}(f_{k}^{q} - f_{m}^{q}) - B_{km}^{pq}(e_{k}^{q} - e_{m}^{q})$					
$\frac{\partial Q_{km}^p}{\partial e_k^q} = G_{km}^{pq} f_k^p - B_{km}^{pq} e_k^p$					
$\frac{\partial Q_{km}^p}{\partial e_m^p} = -G_{km}^{pp} f_k^p + B_{km}^{pp} e_k^p$					
$\frac{\partial Q_{km}^p}{\partial e_m^q} = -G_{km}^{pq} f_k^p + B_{km}^{pq} e_k^p$					
$\frac{\partial Q_{km}^{p}}{\partial f_{k}^{p}} = -2f_{k}^{p}B_{km}^{pp} - G_{km}^{pp}e_{m}^{p} + B_{km}^{pp}f_{m}^{p} + \sum_{\substack{q=a\\q\neq p}}^{c}G_{km}^{pq}(e_{k}^{q} - e_{m}^{q}) - B_{km}^{pq}(f_{k}^{q} - f_{m}^{q})$					
$\frac{\partial Q_{km}^p}{\partial f_m^p} = G_{km}^{pp} e_k^p + B_{km}^{pp} f_k^p$					
$\frac{\partial Q_{km}^p}{\partial f_k^q} = -G_{km}^{pq} e_k^p - B_{km}^{pq} f_k^p$					
$\frac{\partial Q_{km}^p}{\partial f_m^q} = G_{km}^{pq} e_k^p + B_{km}^{pq} f_k^p$					

Tabla A.4 Derivadas en Forma Rectangular para Flujos de Potencia.

A.3 Expresiones para Mediciones de Inyección de Potencia.

Derivadas de Inyección de Potencia "Potencia Real"
$\frac{\partial P_k^p}{\partial V_k^p} = \sum_{\substack{m=1\\m\neq k}}^{N} 2V_k^p Y_{km}^{pp} cos(-\theta_{km}^{pp}) - V_m^p Y_{km}^{pp} cos(\delta_k^p - \delta_m^p - \theta_{km}^{pp}) + \sum_{\substack{m=1\\m\neq k}}^{N} \sum_{\substack{q=a\\m\neq k}}^{C} Y_{km}^{pq} \left(V_k^q cos(\delta_k^p - \delta_k^q - \theta_{km}^{pq}) - V_m^q cos(\delta_k^p - \delta_m^q - \theta_{km}^{pq}) \right)$
$\frac{\partial P_k^p}{\partial V_m^p} = -V_k^p Y_{km}^{pp} \cos(\delta_k^p - \delta_m^p - \theta_{km}^{pp})$
$\frac{\partial P_k^p}{\partial V_k^q} = V_k^p \sum_{\substack{m=1\\m\neq k}}^N Y_{km}^{pq} \cos(\delta_k^p - \delta_k^q - \theta_{km}^{pq})$
$\frac{\partial P_k^p}{\partial V_m^q} = -V_k^p Y_{km}^{pq} \cos\left(\delta_k^p - \delta_m^q - \theta_{km}^{pq}\right)$
$\frac{\partial P_k^p}{\partial \delta_k^p} = V_k^p \sum_{\substack{m=1\\m\neq k}}^N V_m^p Y_{km}^{pp} sen(\delta_k^p - \delta_m^p - \theta_{km}^{pp}) - V_k^p \sum_{\substack{m=1\\m\neq k}}^N \sum_{\substack{q=a\\m\neq k}}^c Y_{km}^{pq} \left(V_k^q sen(\delta_k^p - \delta_k^q - \theta_{km}^{pq}) - V_m^q sen(\delta_k^p - \delta_m^q - \theta_{km}^{pq}) \right)$
$\frac{\partial P_k^p}{\partial \delta_m^p} = -V_k^p V_m^p Y_{km}^{pp} sen(\delta_k^p - \delta_m^p - \theta_{km}^{pp})$
$\frac{\partial P_k^p}{\partial \delta_k^q} = V_k^p \sum_{\substack{m=1\\m\neq k}}^N V_k^q Y_{km}^{pq} sen(\delta_k^p - \delta_k^q - \theta_{km}^{pq})$
$\frac{\partial P_k^p}{\partial \delta_m^q} = -V_k^p V_m^q Y_{km}^{ab} sen(\delta_k^p - \delta_m^q - \theta_{km}^{pq})$
Mediciones de Flujos de Potencia "Potencia Reactiva"
$\frac{\partial Q_k^p}{\partial V_k^p} = \sum_{\substack{m=1\\m\neq k}}^N -2V_k^p Y_{km}^{pp} sen(\theta_{km}^{pp}) - V_m^p Y_{km}^{pp} sen(\delta_k^p - \delta_m^p - \theta_{km}^{pp}) + \sum_{\substack{m=1\\m\neq k}}^N \sum_{\substack{q=a\\m\neq k}}^c Y_{km}^{pq} \left(V_k^q sen(\delta_k^p - \delta_k^q - \theta_{km}^{pq}) - V_m^q sen(\delta_k^p - \delta_m^q - \theta_{km}^{pq})\right)$
$\frac{\partial Q_k^p}{\partial V_m^p} = -V_k^p Y_{km}^{pp} sen(\delta_k^p - \delta_m^p - \theta_{km}^{pp})$
$\frac{\partial Q_k^p}{\partial V_k^q} = V_k^p \sum_{\substack{m=1\\m\neq k}}^N Y_{km}^{pq} sen(\delta_k^p - \delta_k^q - \theta_{km}^{pq})$
$\frac{\partial Q_k^p}{\partial V_m^q} = -V_k^p Y_{km}^{pq} sen(\delta_k^p - \delta_m^q - \theta_{km}^{pq})$
$\frac{\partial P_k^p}{\partial \delta_k^p} = V_k^p \sum_{\substack{m=1\\m\neq k}}^N V_m^p Y_{km}^{pp} \cos(\delta_k^p - \delta_m^p - \theta_{km}^{pp}) - V_k^p \sum_{\substack{m=1\\m\neq k}}^N \sum_{\substack{q=a\\m\neq k}}^c Y_{km}^{pq} \left(V_k^q \cos(\delta_k^p - \delta_k^q - \theta_{km}^{pq}) - V_m^q \cos(\delta_k^p - \delta_m^q - \theta_{km}^{pq}) \right)$
$\frac{\partial Q_k^p}{\partial \delta_m^p} = V_k^p V_m^p Y_{km}^{pp} \cos\left(\delta_k^p - \delta_m^p - \theta_{km}^{pp}\right)$
$\frac{\partial Q_k^p}{\partial \delta_k^q} = -V_k^p \sum_{\substack{m=1\\m\neq k}}^N V_k^q Y_{km}^{pq} cos(\delta_k^p - \delta_k^q - \theta_{km}^{pq})$
$\frac{\partial Q_k^p}{\partial \delta_m^q} = V_k^p V_m^q Y_{km}^{ab} \cos\left(\delta_k^p - \delta_m^q - \theta_{km}^{pq}\right)$

Tabla A.5 Derivadas en Forma Polar para Inyecciones de Potencia.

$$\begin{array}{l} \hline \mathbf{Derivadas de Inyección de Potencia "Potencia Real"} \\ \hline \frac{\partial P_{k}^{p}}{\partial e_{k}^{p}} = \sum_{m=1}^{N} 2e_{k}^{p} G_{km}^{pn} - e_{m}^{p} G_{km}^{pp} + f_{m}^{p} B_{km}^{pp} + \sum_{m=1}^{N} \sum_{d=d}^{c} G_{km}^{pq} (e_{k}^{d} - e_{m}^{d}) - B_{km}^{pq} (f_{k}^{d} - f_{m}^{d}) \\ \hline \frac{\partial P_{k}^{p}}{\partial e_{k}^{p}} = -e_{k}^{p} G_{km}^{pp} - f_{k}^{p} B_{km}^{pq} \\ \hline \frac{\partial P_{k}^{p}}{\partial e_{k}^{p}} = \sum_{m=1}^{N} e_{k}^{p} G_{km}^{pq} - f_{k}^{p} B_{km}^{pq} \\ \hline \frac{\partial P_{k}^{p}}{\partial e_{k}^{p}} = -e_{k}^{p} G_{km}^{pq} - f_{k}^{p} B_{km}^{pq} \\ \hline \frac{\partial P_{k}^{p}}{\partial e_{k}^{p}} = \sum_{m=1}^{N} 2f_{k}^{p} G_{km}^{pp} - f_{m}^{p} G_{km}^{pp} - e_{m}^{p} B_{km}^{pp} + \sum_{m=1}^{N} \sum_{d=d}^{c} G_{km}^{pq} (f_{k}^{d} - f_{m}^{q}) - B_{km}^{pq} (-e_{k}^{q} + e_{m}^{q}) \\ \hline \frac{\partial P_{k}^{p}}{\partial e_{k}^{p}} = -f_{k}^{p} G_{km}^{pp} - f_{m}^{p} G_{km}^{pp} - e_{m}^{p} B_{km}^{pp} + \sum_{m=1}^{N} \sum_{d=d}^{c} G_{km}^{pq} (f_{k}^{d} - f_{m}^{q}) - B_{km}^{pq} (-e_{k}^{q} + e_{m}^{q}) \\ \hline \frac{\partial P_{k}^{p}}{\partial f_{m}^{p}} = -f_{k}^{p} G_{km}^{pp} - e_{k}^{p} B_{km}^{pq} \\ \hline \frac{\partial P_{k}^{p}}{\partial f_{m}^{p}} = -f_{k}^{p} G_{km}^{pp} + e_{k}^{p} B_{km}^{pq} \\ \hline \frac{\partial P_{k}^{p}}{\partial f_{m}^{p}} = -f_{k}^{p} G_{km}^{pp} + e_{k}^{p} B_{km}^{pq} \\ \hline \frac{\partial P_{k}^{p}}{\partial f_{m}^{p}} = -f_{k}^{p} G_{km}^{pp} + e_{k}^{p} B_{km}^{pq} \\ \hline \frac{\partial P_{k}^{p}}{\partial f_{m}^{p}} = -f_{k}^{p} G_{km}^{pp} + e_{k}^{p} B_{km}^{pq} \\ \hline \frac{\partial P_{k}^{p}}{\partial f_{m}^{p}} = -f_{k}^{p} G_{km}^{pp} + e_{k}^{p} B_{km}^{pq} \\ \hline \frac{\partial Q_{k}^{p}}{\partial f_{m}^{p}}} = -f_{k}^{p} B_{km}^{pp} - f_{k}^{p} G_{km}^{pp} \\ \hline \frac{\partial Q_{k}^{p}}}{\partial e_{k}^{p}}} = \sum_{m=1}^{N} - 2e_{k}^{p} B_{km}^{pp} + f_{m}^{p} G_{km}^{pp} + \sum_{m=1}^{N} \sum_{d=d}^{p} B_{km}^{pq} \\ \hline \frac{\partial Q_{k}^{p}}}{\partial e_{k}^{p}}} = \sum_{m=1}^{N} - 2e_{k}^{p} B_{km}^{pp} + e_{m}^{p} B_{km}^{pp} \\ \hline \frac{\partial Q_{k}^{p}}}{\partial e_{k}^{p}}} \\ \hline \frac{\partial Q_{k}^{p}}}{\partial e_{k}^{p}}} = \sum_{m=1}^{N} - 2e_{k}^{p} B_{km}^{pp} \\ \hline \frac{\partial Q_{k}^{p}}}{\partial e_{k}^{p}}} \\ \hline \frac{\partial Q_{k}^{p}}}{\partial e_{k}^{p}}} \\ \hline \frac{\partial Q_{k}^{p}}}{\partial e_{k}^{p}}} = \sum_{m=1}^{N} - 2e_{k}^{p} B_{km}^{pp} \\ \hline \frac{\partial Q_{k}^{p}}}{\partial e_{k}^{p}}} \\ \hline \frac$$

Tabla A.6 Derivadas en Forma Rectangular para Inyecciones de Potencia.

APÉNDICE B

SISTEMA DE PRUEBA DE 37 NODOS.

A continuación se presenta un sistema de prueba más que fue evaluado con el algoritmo EERD, el cual consiste en un alimentador de distribución trifásico de 37 nodos. Este sistema es diseñado con base al alimentador original de la IEEE, ya que los datos referentes a las líneas y configuraciones de fase son los mismos que los datos originales. Estos se pueden revisar en la referencia [33].

El diagrama unifilar para este sistema se tiene en la figura siguiente:

Figura B.1. Sistema de Prueba de 37 Nodos [33].

Para este sistema de prueba se hacen las siguientes modificaciones.

- El regulador de voltaje es omitido, y los valores de las cargas son cambiados.
- El transformador es simulado como una carga mas conectada al nodo 709.
- Mediciones de flujos en las ramas son tomadas de un estudio de flujos de potencia previo.

Este sistema también se simulo en el paquete computacional DIgSILENT, para darnos una idea del estado, bajo las condiciones que se plantearon y posteriormente comparar con nuestros resultados obtenidos.

Primeramente se hace un re nombramiento de nodos, quedando de la siguiente manera:

	Distribución de 37 routos.										
Número de Nodo											
799	701	702	705	703	713	712	742	727	730	704	
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
1	2	3	4	5	6	7	8	9	10	11	
744	709	714	720	729	728	708	731	718	706	707	
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
12	13	14	15	16	17	18	19	20	21	22	
732	733	725	722	724	734	710	737	736	735	738	
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
23	24	25	26	27	28	29	30	31	32	33	
711	740	741									
\downarrow	\downarrow	\downarrow									
34	35	36									

Tabla B.1. Renombramiento de Número de Nodos para el Sistema Eléctrico deDistribución de 37 Nodos.

Las mediciones se muestran en la Tabla B.2. Donde se muestra el nodo de envío y nodo receptor, así como los valores de los flujos.

No	obc	Fluj	o de Potencia Ad	ctiva	Flujo de Potencia Reactiva			
р	q	Fase "a"	Fase "b"	Fase "c"	Fase "a"	Fase "b"	Fase "c"	
1	2	1890.00 KW	1780.00 KW	1830.00 KW	890.00 KVAr	900.00 KVAr	800.00 KVAr	
2	3	1630.00 KW	1600.00 KW	1510.00 KW	660.00 KVAr	790.00 KVAr	700.00 KVAr	
3	4	170.00 KW	160.00 KW	170.00 KW	80.00 KVAr	80.00 KVAr	70.00 KVAr	
3	5	980.00 KW	910.00 KW	900.00 KW	380.00 KVAr	440.00 KVAr	350.00 KVAr	
3	6	450.00 KW	500.00 KW	420.00 KW	180.00 KVAr	250.00 KVAr	250.00 KVAr	
4	7	90.00 KW	80.00 KW	90.00 KW	40.00 KVAr	40.00 KVAr	30.00 KVAr	
4	8	80.00 KW	80.00 KW	90.00 KW	40.00 KVAr	40.00 KVAr	40.00 KVAr	
5	9	190.00 KW	180.00 KW	210.00 KW	80.00 KVAr	60.00 KVAr	60.00 KVAr	
5	10	780.00 KW	720.00 KW	690.00 KW	280.00 KVAr	360.00 KVAr	280.00 KVAr	
6	11	370.00 KW	410.00 KW	330.00 KW	130.00 KVAr	210.00 KVAr	210.00 KVAr	
9	12	150.00 KW	140.00 KW	160.00 KW	60.00 KVAr	40.00 KVAr	40.00 KVAr	
10	13	680.00 KW	630.00 KW	590.00 KW	240.00 KVAr	320.00 KVAr	230.00 KVAr	
11	14	100.00 KW	100.00 KW	90.00 KW	50.00 KVAr	50.00 KVAr	50.00 KVAr	
11	15	270.00 KW	310.00 KW	240.00 KW	90.00 KVAr	150.00 KVAr	160.00 KVAr	
12	16	40.00 KW	40.00 KW	40.00 KW	20.00 KVAr	20.00 KVAr	20.00 KVAr	

Tabla B.2 Mediciones para el Sistema de Prueba de 37 Nodos.

12	17	40.00 KW	40.00 KW	40.00 KW	20.00 KVAr	20.00 KVAr	20.00 KVAr
13	18	590.00 KW	540.00 KW	510.00 KW	200.00 KVAr	280.00 KVAr	190.00 KVAr
13	19	90.00 KW	80.00 KW	90.00 KW	40.00 KVAr	40.00 KVAr	40.00 KVAr
14	20	80.00 KW	80.00 KW	70.00 KW	40.00 KVAr	40.00 KVAr	40.00 KVAr
15	21	40.00 KW	40.00 KW	40.00 KW	20.00 KVAr	20.00 KVAr	20.00 KVAr
15	22	140.00 KW	180.00 KW	110.00 KW	30.00 KVAr	90.00 KVAr	100.00 KVAr
18	23	40.00 KW	40.00 KW	40.00 KW	20.00 KVAr	20.00 KVAr	20.00 KVAr
18	24	550.00 KW	490.00 KW	460.00 KW	180.00 KVAr	250.00 KVAr	170.00 KVAr
21	25	40.00 KW	40.00 KW	40.00 KW	20.00 KVAr	20.00 KVAr	20.00 KVAr
22	26	100.00 KW	140.00 KW	60.00 KW	10.00 KVAr	70.00 KVAr	70.00 KVAr
22	27	40.00 KW	40.00 KW	40.00 KW	20.00 KVAr	20.00 KVAr	20.00 KVAr
24	28	460.00 KW	410.00 KW	370.00 KW	130.00 KVAr	210.00 KVAr	130.00 KVAr
28	29	130.00 KW	130.00 KW	130.00 KW	60.00 KVAr	60.00 KVAr	60.00 KVAr
28	30	300.00 KW	240.00 KW	200.00 KW	60.00 KVAr	150.00 KVAr	50.00 KVAr
29	31	40.00 KW	40.00 KW	40.00 KW	20.00 KVAr	20.00 KVAr	20.00 KVAr
29	32	80.00 KW	80.00 KW	90.00 KW	40.00 KVAr	40.00 KVAr	40.00 KVAr
30	33	180.00 KW	170.00 KW	160.00 KW	50.00 KVAr	80.00 KVAr	50.00 KVAr
33	34	90.00 KW	110.00 KW	130.00 KW	50.00 KVAr	20.00 KVAr	50.00 KVAr
34	35	50.00 KW	70.00 KW	90.00 KW	30.00 KVAr	10.00 KVAr	40.00 KVAr
34	36	40.00 KW	40.00 KW	50.00 KW	20.00 KVAr	10.00 KVAr	10.00 KVAr

La solución para este sistema, se da en tres iteraciones y el vector de estado encontrado se muestra en la tabla siguiente:

Voltajes Estimados Forma Polar											
		Fase "A"		Fase	• ''B''	Fase "C"					
		Magnitud	Angulo	Magnitud	Angulo	Magnitud	Angulo				
		Volts	Grados	Volts	Grados	Volts	Grados				
NODO(1)	=	2771.281	0	2771.281	-120	2771.281	120				
NODO(2)	=	2688.757	-0.4774	2701.031	-120.6081	2688.894	119.1987				
NODO(3)	=	2635.839	-0.8789	2654.377	-120.9808	2639.688	118.6711				
NODO(4)	=	2626.676	-0.8523	2646.065	-120.9466	2630.96	118.6784				
NODO(5)	=	2591.592	-1.2416	2617.565	-121.2878	2600.797	118.1805				
NODO(6)	=	2623.592	-0.9061	2641.145	-120.9833	2628.067	118.6573				
NODO(7)	=	2623.8	-0.8455	2643.558	-120.9358	2628.224	118.6763				
NODO(8)	=	2623.252	-0.8415	2642.743	-120.9307	2627.119	118.6834				
NODO(9)	=	2585.414	-1.2299	2612.131	-121.282	2594.454	118.1707				
NODO(10)	=	2555.966	-1.3701	2586.01	-121.2964	2571.027	118.0506				
NODO(11)	=	2609.258	-0.9558	2625.56	-120.9818	2614.453	118.6541				
NODO(12)	=	2582.103	-1.2384	2609.477	-121.2945	2591.5	118.1479				
NODO(13)	=	2545.545	-1.4065	2576.528	-121.2984	2562.61	118.0082				
NODO(14)	=	2608.125	-0.9514	2624.51	-120.9784	2613.52	118.6579				
NODO(15)	=	2593.064	-1.0153	2607.544	-120.9927	2599.091	118.6602				
NODO(16)	=	2580.532	-1.2328	2608.003	-121.2887	2590.01	118.1519				

Tabla B.3. Solución para el Sistema de 37 Nodos.

NODO(17)	=	2580.981	-1.2344	2608.424	-121.2904	2590.436	118.1508
NODO(18)	=	2531.221	-1.463	2563.426	-121.296	2550.929	117.9439
NODO(19)	=	2541.128	-1.4192	2573.153	-121.2981	2558.431	117.9969
NODO(20)	=	2602.199	-0.9282	2619.042	-120.9619	2608.825	118.6788
NODO(21)	=	2591.113	-1.0165	2605.759	-120.9933	2597.29	118.6554
NODO(22)	=	2576.541	-1.0465	2585.867	-120.9044	2584.169	118.8043
NODO(23)	=	2529.386	-1.4563	2561.711	-121.2892	2549.203	117.9488
NODO(24)	=	2517.651	-1.52	2551.665	-121.2997	2540.463	117.8894
NODO(25)	=	2589.551	-1.0109	2604.279	-120.9875	2595.804	118.6593
NODO(26)	=	2575.036	-1.0514	2583.598	-120.8965	2583.106	118.8189
NODO(27)	=	2572.279	-1.0309	2581.81	-120.8884	2580.12	118.815
NODO(28)	=	2498.217	-1.6213	2534.304	-121.3029	2525.819	117.8048
NODO(29)	=	2488.488	-1.5922	2525.235	-121.2737	2516.732	117.8243
NODO(30)	=	2484.497	-1.7216	2521.956	-121.278	2517.227	117.7282
NODO(31)	=	2481.012	-1.5643	2518.272	-121.2462	2509.745	117.8443
NODO(32)	=	2486.216	-1.5847	2523.064	-121.2631	2514.233	117.8278
NODO(33)	=	2479.15	-1.7507	2516.737	-121.2796	2512.669	117.6952
NODO(34)	=	2475.974	-1.7499	2513.78	-121.2998	2508.799	117.6769
NODO(35)	=	2474.503	-1.7433	2512.073	-121.3033	2506.249	117.6814
NODO(36)	=	2474.645	-1.7501	2512.604	-121.3054	2507.471	117.6631

Tabla B.4. Residuos entre Vectores de Estado, DIgSILENT-EERD para el Sistema de37 Nodos.

	Fase	"a"	Fase "b"		Fase "c"	
Nodo	Magnitud	Angulo	Magnitud	Angulo	Magnitud	Angulo
1	-0.001281	0	-0.001281	0	-0.001281	0
2	0.001243	-0.1626	-0.011031	0.0381	0.011106	0.1413
3	0.004161	-0.2411	-0.014377	0.0108	0.010312	0.2689
4	0.003324	-0.2377	-0.016065	-0.0034	0.00904	0.2816
5	0.008408	-0.2984	-0.017565	-0.0222	0.009203	0.3695
6	0.006408	-0.2539	-0.011145	-0.0067	0.011933	0.2927
7	0.0062	-0.2345	-0.013558	-0.0042	0.011776	0.2837
8	0.006748	-0.2385	-0.012743	-0.0093	0.002881	0.2866
9	0.004586	-0.3001	-0.012131	-0.018	0.005546	0.3793
10	0.014034	-0.2999	-0.01601	-0.0436	0.008973	0.4094
11	0.010742	-0.2542	-0.01556	-0.0182	0.005547	0.3059
12	0.007897	-0.3016	-0.019477	-0.0255	0.0085	0.3821
13	0.014455	-0.3035	-0.016528	-0.0516	0.00739	0.4218
14	0.001875	-0.2486	-0.01451	-0.0216	0.00648	0.3021
15	0.006936	-0.2647	-0.017544	-0.0373	0.010909	0.3298

16	0.009468	-0.2972	-0.018003	-0.0213	0.00999	0.3881
17	0.009019	-0.2956	-0.018424	-0.0196	0.009564	0.3892
18	0.008779	-0.307	-0.023426	-0.074	0.009071	0.4461
19	0.008872	-0.2908	-0.023153	-0.0619	0.011569	0.4331
20	0.007801	-0.2618	-0.009042	-0.0081	0.011175	0.3112
21	0.008887	-0.2635	-0.015759	-0.0367	0.00271	0.3246
22	0.003459	-0.2735	-0.015867	-0.0456	0.005831	0.3257
23	0.010614	-0.3037	-0.021711	-0.0708	0.010797	0.4512
24	0.012349	-0.31	-0.021665	-0.0803	0.009537	0.4606
25	0.010449	-0.2591	-0.014279	-0.0425	0.004196	0.3307
26	0.004964	-0.2786	-0.013598	-0.0435	0.006894	0.3311
27	0.007721	-0.2791	-0.01181	-0.0516	0.00988	0.335
28	0.011783	-0.3087	-0.024304	-0.0971	0.004181	0.4752
29	0.011512	-0.3078	-0.015235	-0.0963	0.003268	0.4857
30	0.015503	-0.3084	-0.021956	-0.102	0.002773	0.5018
31	0.018988	-0.3157	-0.018272	-0.0938	0.010255	0.4957
32	0.013784	-0.3153	-0.023064	-0.0969	0.005767	0.4922
33	0.01085	-0.3093	-0.016737	-0.1104	0.007331	0.5148
34	0.014026	-0.3101	-0.02378	-0.1202	0.011201	0.5231
35	0.015497	-0.3067	-0.022073	-0.1167	0.003751	0.5186
36	0.015355	-0.3099	-0.022604	-0.1146	0.002529	0.5269

En el paquete computacional DIgSILENT se realizó la simulación del sistema mostrado en la Figura B.1 con los datos de líneas correspondientes y valores de carga, obteniendo un estudio de flujos de potencia del cual los valores de voltaje se compararon con los calculados mediante el programa computacional de estimación de estado desarrollado, mostrando los residuos en la Tabla B.4, de la cual podemos observar que no se tiene gran diferencia entre uno y otro, validando nuestros resultados.

APÉNDICE C

ARCHIVOS DE SALIDA DEL ALGORITMO DE LOCALIZACIÓN ÓPTIMA.

En este Apéndice se presenta el archivo de salida del algoritmo de localización óptima obtenido con el programa computacional que se desarrollo en Fortran 90. A continuación se escriben solamente las salidas de los vectores de estado y normas para los cuatro casos de estudio del capítulo 4, ya que el archivo original es muy extenso.

*****	****	*****	****	*****	*****	*****	
* MUESTRA NUMERO * 1							

<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>							
	VOLTA	JES ESTIMADOS	FORMA POLAR				
	FASE	"A"	FASE	 "в"	FASE "	с"	
	MAGNITUD	ANGULO	MAGNITUD	ANGULO	MAGNITUD	ANGULO	
	VOLTS	GRADOS	VOLTS	GRADOS	VOLTS	GRADOS	
NODO(1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000	
NODO(2) =	2339.1290	7163	2302.5990	-121.9439	2308.7730	117.7233	
NODO(3) =	2339.1290	7163	2266.0730	-122.0347	2301.8050	117.5617	
NODO(4) =	2303.1800	-1.6663	2298.2950	-122.2362	2258.8360	116.9303	
NODO(5) =	2331.8110	/8/9	2297.6700	-121.9945	2302.1/50	11/./144	
NODO(6) =	2339.1290	/103	2253.9180	-122.08/0	2300.2450	117.5098	
NODO(7) =	2298.3030	-1.7248	2298.2950	-122.2302	2230.2000	116,900/	
NODO(-0) =	2303.1600	-1.6703	2296.2950	-122.2302	2236.0300	116 0073	
NODO(10) =	2208 3030	-1 7248	2295.5500	-122.2402	2241 7980	116 8215	
NODO(11) =	2283.9780	-1.6423	2298.2950	-122.2362	2250.2600	116.9007	
****	****	****	****	****	*****	*****	
NODMA DE LA EAC	TE "A" 00167				A EASE "C" 0015	4	
NORMA DE LA FAS	A = .00167	NORMA DE LA	FASE $B = .040/8$	NORMA DE LA	A FASE $C = .0015$	4	
*****	*****	******	*****	*****	*****	*****	
****	******	******	*****	*****	*****	*****	
* MUE	STRA NUMERO	* 2					
****	****		*****	*****	****	*****	
<<<<<<<	<<<<<<<	< VOLTAJES ES	TIMADOS DEL SI	STEMA >>>>>>	~~~~~	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	VOLTA	JES ESTIMADOS	FORMA POLAR				
	FASE '	 'A''	FASE	 "в"	FASE "	 c"	
	MAGNITUD	ANGULO	MAGNITUD	ANGULO	MAGNITUD	ANGULO	
	VOLTS	GRADOS	VOLTS	GRADOS	VOLTS	GRADOS	
NODO(1) =	2401.7700	. 0000	2401.7700	-120.0000	2401.7700	120.0000	
NODO(2) =	2339, 1280	7163	2302,6000	-121,9439	2308,7750	117,7233	
NODO(3) =	2339,1280	7163	2266.0730	-122.0348	2301.8060	117,5617	
NODO(4) =	2303.1770	-1.6663	2298,2950	-122.2362	2258.8390	116,9304	
NODO(5) =	2331.8090	7879	2297.6710	-121.9945	2302.1760	117.7144	
NODO(6) =	2339.1280	7163	2253.9190	-122.0870	2300.2460	117.5098	
NODO(7) =	2298.3000	-1.7248	2298.2950	-122.2362	2250.2620	116.9007	
NODO(8) =	2303.1770	-1.6663	2298.2950	-122.2362	2258.8390	116.9304	
NODO(9) =	2300.2650	-1.6703	2295.5560	-122.2402	2256.1150	116.9074	
NODO(10) =	2298.3000	-1.7248	2298.2950	-122.2362	2241.8010	116.8215	
NODO(11) =	2283.9740	-1.6424	2298.2950	-122.2362	2250.2620	116.9007	
*****	****	******	****	*****	****	*****	
NORMA DE LA FAS	SE "A" = .00157	NORMA DE LA	FASE "B" = .04680	NORMA DE LA	A FASE "C" = .0014	6	

• C.1 Archivo de Salida para el Sistema de Prueba Caso 1.

*******	*****	******	******	*****	******	*****	
* MUESTRA NUMERO * 3							
<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>							
	VOLTA	JES ESTIMADOS	FORMA POLAR				
	FASE	"A"	FASE	 "в"	FASE "	c"	
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	
NODO $(1) =$	2401.7700	. 0000	2401.7700	-120.0000	2401.7700	120.0000	
NODO(2) = NODO(3) =	2338.7470	7151	2302.8810	-121.9618	2308.9900	117.5678	
NODO(4) =	2302.7920	-1.6654	2298.5800	-122.2539	2259.0560	116.9361	
NODO(5) =	2331.4270	7867	2297.9530	-122.0124	2302.3920	117.7199	
NODO(7) =	2297.9130	-1.7239	2298.5800	-122.2539	2250.4810	116.9065	
NODO(8) =	2302.7920	-1.6654	2298.5800	-122.2539	2259.0560	116.9361	
NODO(9) = NODO(10) =	2299.8/90	-1.6694	2295.8410	-122.25/9	2256.3320	116.9131	
NODO(11) =	2283.5850	-1.6414	2298.5800	-122.2539	2250.4810	116.9065	
*****	*****	******	*****	******	****	*****	
NORMA DE LA FA	SE "A" = .00008	NORMA DE LA I	FASE "B" = .00003	NORMA DE LA	A FASE "C" = .0000	5	
*****	*****	******	****	****	****	- *****	
****	*****	****	****	*****	*****	*****	
* MI]	ESTRA NUMERC	* 4					
***********	****	******	*****	*****	*****	*****	
~~~~~~		<< VOLTAJES E	STIMADOS DEL SI	ISTEMA >>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	VOL 17	JES ESTIMADOS	FURMA PULAR				
	FASE	"A"	FASE	"в"	FASE "	с"	
	MAGNITUD	ANGULO	MAGNITUD	ANGULO	MAGNITUD	ANGULO	
	VOL 15	GRADUS	VUL15	GRADUS	VUL15	GRADUS	
NODO(1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000	
NODO(2) = NODO(3) =	2338.7470	/151	2302.8810	-121.9618	2308.9900	117.7288	
NODO(4) =	2302.7920	-1.6654	2298.5800	-122.2539	2259.0550	116.9361	
NODO(5) =	2331.4270	7867	2297.9530	-122.0124	2302.3920	117.7199	
NODO(6) = NODO(7) =	2338.7470	-1,7239	2254.2040	-122.1049	2300.4590	117.5152	
NODO(8) =	2302.7920	-1.6654	2298.5800	-122.2539	2259.0550	116.9361	
NODO(9) =	2299.8790	-1.6694	2295.8410	-122.2579	2256.3320	116.9131	
NODO(10) = NODO(11) =	2283.5850	-1.6414	2298.5800	-122.2539	2250.4800	116.9065	
****	***	***	****	• • • • • • • • • • • • • • • • • • •	****	****	
	SE "A" - 00009		EASE "D" - 01627		**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
NORMA DE LA FA	SE A = .00008	NORMA DE LA	$FASE \ \mathbf{D} = .01037$		A FASE $C = .0001$	0	
****	*****	*****	*****	*****	*****	*****	
*****	*****	******	*****	*****	*****	*****	
* MI	ESTRA NUMERO	)* 5					
*************	*****	******	*****	*****	*****	*****	
~~~~~~		<< VOLTAJES E	STIMADOS DEL SI	ISTEMA >>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	FASE	"A"	FASE	"В"	FASE "	'C''	
	MAGNITUD VOLTS	GRADOS	MAGNITUD VOLTS	GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	
NODO(1) =	2401.7700	. 0000	2401.7700	-120.0000	2401.7700	120.0000	
NODO(2) = NODO(3) =	2338.7470	/151 7151	2302.8810	-121.9618	2308,9900	117.7288	
NODO(4) =	2302.7920	-1.6654	2298.5790	-122.2539	2259.0570	116.9361	
NODO(5) =	2331.4270	7867	2297.9530	-122.0124	2302.3920	117.7199	
NODO(6) = NODO(7) =	2297.9130	-1,7239	2298.5790	-122.2539	2300.4600	116.9065	
NODO(8) =	2302.7920	-1.6654	2298.5790	-122.2539	2259.0570	116.9361	
NODO(9) =	2299.8790	-1.6694	2295.8400	-122.2579	2256.3330	116.9131	
NODO(10) = NODO(11) =	2283.5850	-1.6414	2298.5790	-122.2539	2242.0210	116.9065	
	****	****		****		****	
	·····	NODMA DD I A 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NODIAL DET	· · · · · · · · · · · · · · · · · · ·	~~~~**********************************	
NOKWA DE LA FA	SE A = .00003	INUKIMA DE LA	ГАЗЕ В = .01632		агазе с = .0000	/ *****	
• • • • • • • • • • • • • • • • • • •	················		· · · · · · · · · · · · · · · · · · ·	······································	· · · · · · · · · · · · · · · · · · ·		

* MUESTRA NUMERO * 6

	FASE "A"		FASE	FASE "B"		c"		
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS		
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(5) = NODO(6) = NODO(7) = NODO(7) = NODO(8) = NODO(9) = NODO(10) = NODO(11) =	2401.7700 2338.7470 2338.7470 2302.7920 2331.4270 2338.7470 2338.7470 2338.7470 2297.9140 2299.8790 2299.8790 2297.9140 2283.5860	.0000 7151 7151 -1.6654 7867 7151 -1.7239 -1.6654 -1.6694 -1.7239 -1.6414	2401.7700 2302.8810 2268.3490 2298.5790 2297.9530 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790	-120.0000 -121.9618 -122.0559 -122.2539 -122.0124 -122.1081 -122.2539 -122.2539 -122.2579 -122.2539 -122.2539	2401.7700 2308.9900 2302.0430 2302.3920 2300.4830 2250.4800 2250.550 2256.3320 2242.0200 2250.4800	120.0000 117.7288 117.5678 116.9361 117.7199 117.5158 116.9064 116.9361 116.9131 116.8273 116.9064		
***************************************						*****		
NORMA DE LA FA	ASE "A" = .00003	NORMA DE LA	FASE "B" = .00002	NORMA DE LA	A FASE "C" = .0000	8		

* MUESTRA NUMERO * 7

	FASE "A"		FASE	FASE "B"		c"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(7) = NODO(8) = NODO(9) = NODO(9) =	2401.7700 2338.7470 2338.7470 2331.4270 2331.4270 2338.7470 2297.9130 2302.7920 2299.8790 2299.8790	.0000 7151 7151 -1.6654 7867 7151 -1.7239 -1.6654 -1.6694 -1.7239	2401.7700 2302.8810 2266.3490 2298.5790 2297.9530 2254.1950 2298.5790 2298.5790 2298.5790 2298.5790	-120.0000 -121.9618 -122.0559 -122.2539 -122.0124 -122.1081 -122.2539 -122.2539 -122.2579 -122.2579	2401.7700 2308.9900 2302.0430 2259.0570 2302.3920 2300.4830 2250.4820 2259.0570 2256.3330 2256.3330	120.0000 117.7288 117.5678 116.9361 117.7199 117.5158 116.9065 116.9361 116.9131 116.8273
NODO(11) =	2283.5850	-1.6414	2298.5790	-122.2539	2250.4820	116.9065

NORMA DE LA FASE "A" = .00006 NORMA DE LA FASE "B" = .00000 NORMA DE LA FASE "C" = .00002

	FASE "A"		FASE "B"		FASE "C"	
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(8) = NODO(8) = NODO(9) = NODO(10) = NODO(11) =	2401.7700 2338.7470 2338.7470 2302.7920 2331.4270 2338.7470 2297.9130 2302.7920 2299.8790 2299.8790 2297.9130 2283.5850	.0000 7151 7151 -1.6654 7867 7151 -1.7239 -1.6654 -1.7239 -1.6694 -1.7239 -1.6414	2401.7700 2302.8810 2266.3570 2298.5800 2297.9530 2254.2040 2298.5800 2298.5800 2295.8410 2298.5800 2298.5800	-120.0000 -121.9618 -122.0527 -122.2539 -122.0124 -122.1049 -122.2539 -122.2539 -122.2579 -122.2539 -122.2539	2401.7700 2308.9900 2302.0200 2302.3920 2300.4600 2250.4800 2256.3320 2256.3320 2242.0200 2250.4800	120.0000 117.7288 117.5672 116.9361 117.5152 116.9065 116.9361 116.9361 116.8273 116.9065
**************************************	**************************************	**************************************	**************************************	**************************************	**************************************) *******************

*****	******	******	*****	*****	*****	*****
* M *********	UESTRA NUMER() * 9 ***************	*****	*****	*****	*****
<<<<<<<		<<< VOLTAJES E	STIMADOS DEL S	ISTEMA >>>>>>	»>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	VOLT	AJES ESTIMADOS	FORMA POLAR			
	FASE	"A"	FASE	"в"	FASE "	c"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(7) = NODO(8) = NODO(9) = NODO(10) = NODO(11) =	2401.7700 2338.9930 2338.9930 2331.6740 2331.6740 2338.9930 2298.1640 2303.0420 2300.1290 2298.1640 2283.8370	.0000 7160 7160 7876 7876 7160 -1.7246 -1.6661 -1.6701 -1.7246 -1.6421	2401.7700 2302.7100 2266.1760 2297.7810 2297.7810 2298.4070 2298.4070 2298.4070 2298.4070 2298.4070 2298.4070	-120.0000 -121.9502 -122.0442 -122.2424 -122.00065 -122.2424 -122.2424 -122.2424 -122.2424 -122.2424 -122.2424	2401.7700 2308.8490 2301.9030 2258.9130 2302.2510 2300.3440 2250.3370 2256.1890 2251.890 2251.8760 2250.3370	120.0000 117.7253 117.5643 116.9324 117.7164 117.5124 116.9028 116.928 116.8236 116.9028
NORMA DE LA F.	ASE "A" = .00108	***************** NORMA DE LA *******	FASE "B" = .02821	**************************************	A FASE "C" = .0008	**************************************

NORMA MINIMA ENCONTRADA PARA LA FASE "A" = .00003 CORRESPONDE A LA MUESTRA NUMERO = 6 NORMA MINIMA ENCONTRADA PARA LA FASE "B" = .00000 CORRESPONDE A LA MUESTRA NUMERO = 7 NORMA MINIMA ENCONTRADA PARA LA FASE "C" = .00002 CORRESPONDE A LA MUESTRA NUMERO = 7 LA NORMA MINIMA ENCONTRADA ES = .00000 CORRESPONDE A LA MUESTRA NUMERO = 7

• C.2 Archivo de Salida para el Sistema de Prueba Caso 2.

* MUESTRA NUMERO * 1 **********************************							
<<<<<<<		<<< VOLTAJES E	STIMADOS DEL S	ISTEMA >>>>>>	»>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	VOLT	AJES ESTIMADOS	FORMA POLAR				
	FASE	"A"	FASE	"в"	FASE "	c"	
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(7) = NODO(8) = NODO(8) = NODO(9) = NODO(10) = NODO(11) =	2401.7700 2397.7360 2397.7360 2362.4490 2390.5590 2397.7360 2357.7410 2362.4490 2359.6350 2357.7410 2343.7760	.0000 1.6870 .8163 1.6218 1.6870 .7632 .8163 .8135 .7632 .8415	2401.7700 2365.3610 2329.8110 2360.3760 2360.4910 2317.9820 2360.3760 2360.3760 2357.6520 2360.3760 2360.3760	-120.0000 -117.0736 -117.1588 -117.3842 -117.1245 -117.2079 -117.3842 -117.3842 -117.3842 -117.3842 -117.3842 -117.3842	2401.7700 2354.9630 2348.0360 2307.5000 2348.6720 2346.4750 2392.1970 2307.5000 2304.8430 2290.9150 2299.1970	120.0000 122.9462 122.7904 122.1829 122.9377 122.7403 122.1544 122.1829 122.1597 122.0785 122.1544	

* MUESTRA NUMERO * 2

<//>

VOLTAJES ESTIMADOS FORMA POLAR							
	FASE	"A"	FASE	"в"	FASE "C"		
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(5) = NODO(6) = NODO(7) = NODO(8) = NODO(9) =	2401.7700 2338.9930 2338.9930 2333.0420 2331.6740 2338.9930 2298.1640 2303.0420 2300.1290 2300.1290	.0000 7160 7160 -1.6661 7876 7160 -1.7246 -1.6661 -1.6661 -1.6701	2401.7700 2302.7090 2266.1750 2298.4060 2297.7810 2254.0210 2298.4060 2298.4060 2298.4060 2295.6680	-120.0000 -121.9502 -122.0443 -122.2424 -122.0065 -122.2424 -122.2424 -122.2424 -122.2424 -122.2464	2401.7700 2308.8490 2301.9040 2258.9130 2302.2510 2300.3440 2250.3370 2258.9130 2256.1890	120.0000 117.7253 117.5643 116.9324 117.7164 117.5124 116.9028 116.9028 116.9324	
NODO(10) =	2283.8380	-1.6421	2298.4000	-122.2424	2250.3370	116.9028	
**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	*************** 00089	
*****	*****	*****	*****	*****	******	*****	

* MUESTRA NUMERO * 3

MAGNITUD VOLTS ANGULO GRADOS MAGNITUD VOLTS ANGULO GRADOS MAGNITUD VOLTS ANGULO GRADOS MAGNITUD VOLTS ANGULO GRADOS NODO(1) = 2401.7700 .0000 2401.7700 -120.0000 2401.7700 120.000 NODO(2) = 2339.1290 7163 2302.6000 -121.9439 2308.7730 117.723 NODO(3) = 2331.790 -1.6663 2298.2960 -122.0347 2301.8050 117.561 NODO(5) = 2331.8100 7879 2297.6710 -121.9945 2302.1750 117.714 NODO(6) = 2339.1290 7163 2253.9190 -122.0870 2300.2450 117.501 NODO(5) = 2331.8100 7879 2297.6710 -121.9945 2302.1750 117.714 NODO(6) = 2339.1290 7163 2253.9190 -122.0870 2300.2450 117.509 NODO(7) = 2298.3020 -1.7249 2298.2960 -122.2362 2250.8600 116.900 NODO(8) = 2303.1790 -1.6663 2298.2960 -122.2362		FASE "A"		FASE	FASE "B"		c"
NODO(1) = 2401.7700 .0000 2401.7700 -120.0000 2401.7700 120.000 NODO(2) = 2339.1290 7163 2302.6000 -121.9439 2308.7730 117.723 NODO(3) = 2339.1290 7163 2266.0740 -122.0347 2301.8050 117.561 NODO(4) = 2331.1790 -1.6663 2298.2960 -122.2362 2258.8360 116.930 NODO(5) = 2331.8100 7879 2297.6710 -121.9945 2302.1750 117.714 NODO(6) = 2339.1290 7163 2253.9190 -122.0870 2300.2450 117.509 NODO(5) = 2339.1290 7163 2253.9190 -122.0870 2300.2450 117.509 NODO(6) = 2339.1290 7163 2253.9190 -122.0870 2300.2450 117.509 NODO(7) = 2298.3020 -1.7249 2298.2960 -122.2362 2250.2600 116.900 NODO(8) = 2303.1790 -1.6663 2298.2960 -122.2362 258.8360 116.930		MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(9) = 2300.2670 -1.6704 2295.5570 -122.2402 2256.1120 116.907 NODO(10) = 2298.3020 -1.7249 2298.2960 -122.2362 2241.7980 116.821 NODO(11) = 2283.9760 -1.6424 2298.2960 -122.2362 2250.2600 116.907	NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(7) = NODO(8) = NODO(8) = NODO(9) = NODO(10) = NODO(11) =	2401.7700 2339.1290 2339.1290 2303.1790 2331.8100 239.1290 2298.3020 2303.1790 2300.2670 2300.2670 2298.3020 2283.9760	.0000 7163 7163 -1.6663 7879 7163 -1.7249 -1.6663 -1.6704 -1.7249 -1.6424	2401.7700 2302.6000 2266.0740 2298.2960 2297.6710 2298.2960 2298.2960 2298.2960 2295.5570 2298.2960 2298.2960	-120.0000 -121.9439 -122.0347 -122.2362 -121.9945 -122.0870 -122.2362 -122.2362 -122.2402 -122.2362 -122.2362 -122.2362	2401.7700 2308.7730 2301.8050 2258.8360 2302.1750 2300.2450 2250.2600 2258.8360 2256.1120 2241.7980 2250.2600	120.0000 117.7233 117.5617 116.9304 117.7144 117.5098 116.9007 116.9304 116.9074 116.8215 116.9007

NORMA DE LA FASE "A" = .00160 NORMA DE LA FASE "B" = .04679 NORMA DE LA FASE "C" = .00152

* MUESTRA NUMERO * 4

	FASE	"A"	FASE	"в"	FASE "	c"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(6) = NODO(8) = NODO(9) = NODO(10) = NODO(11) =	2401.7700 2397.7360 2397.7360 2362.4490 2390.5590 2397.7360 2357.7410 2362.4490 2359.6350 2357.7410 2357.7410 2357.7410	.0000 1.6870 .8163 1.6218 1.6870 .7632 .8163 .8135 .7632 .8415	2401.7700 2365.3610 2329.7720 2360.3760 2360.4910 2317.9460 2360.3760 2360.3760 2357.6520 2360.3760 2360.3760	-120.0000 -117.0736 -117.1619 -117.3842 -117.1245 -117.2110 -117.3842 -117.3842 -117.3842 -117.3842 -117.3842 -117.3842	2401.7700 2354.9630 2348.0640 2307.5000 2348.6720 2346.5030 2299.1970 2307.5000 2304.8430 2290.9170 2299.1970	120.0000 122.9462 122.7909 122.1829 122.9377 122.7408 122.1544 122.1829 122.1597 122.0785 122.1544
NORMA DE LA FA	SE "A" = 15.1122	NORMA DE LA	A FASE "B" = 19.72	2559 NORMA E	DE LA FASE "C" =	***************************************

* MUESTRA NUMERO * 5

<//>

	VOLTA	JES ESTIMADOS	FORMA POLAR			
	FASE	"A"	FASE	FASE "B"		c"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) = NODO(3) =	2397.7360 2397.7360	1.6870 1.6870	2365.3610 2329.8110	-117.0736 -117.1588	2354.9630 2348.0360	122.9462 122.7904
NODO(4) =	2362.4490	.8163	2360.3760	-117.3842	2307.5000	122.1829
NODO(6) =	2390.3370	1.6870	2317.9820	-117.2079	2346.4750	122.9377
NODO(7) = NODO(8) =	2357.7410 2362.4490	.7632	2360.3760 2360.3760	-117.3842 -117.3842	2299.1970 2307.5000	122.1544
NODO(9) =	2359.6350	.8135	2357.6520	-117.3877	2304.8430	122.1597
NODO(10) = NODO(11) =	2343.7810	.8415	2360.3760	-117.3842	2290.9150	122.0785
*****	*****	*****	******	*****	*****	*****
NORMA DE LA FA	ASE "A" = 15.11220	NORMA DE L	A FASE "B" $= 19.7$	72560 NORMA	DE LA FASE "C" =	19.24940

* MUESTRA NUMERO * 6

VOLTAJES ESTIMADOS DEL SISTEMA

	FASE "A"		FASE	FASE "B"		C"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2397.7360	1.6870	2365.3610	-117.0736	2354.9630	122.9462
NODO(3) =	2397.7360	1.6870	2329.8110	-117.1588	2348.0360	122.7904
NODO(4) =	2362.4490	.8163	2360.3760	-117.3842	2307.5000	122.1829
NODO(5) =	2390.5570	1.6219	2360.4910	-117.1245	2348.6710	122.9377
NODO(6) =	2397.7360	1.6870	2317.9820	-117.2079	2346.4750	122.7403
NODO(7) =	2357.7410	.7632	2360.3760	-117.3842	2299.1970	122.1544
NODO(8) =	2362.4490	.8163	2360.3760	-117.3842	2307.5000	122.1829
NODO(9) =	2359.6350	.8135	2357.6520	-117.3877	2304.8430	122.1597
NODO(10) =	2357.7410	.7632	2360.3760	-117.3842	2290.9170	122.0785
NODO(11) =	2343.7760	.8415	2360.3760	-117.3842	2299.1970	122.1544

NORMA DE LA FASE "A" = 15.11220 NORMA DE LA FASE "B" = 19.72560 NORMA DE LA FASE "C" = 19.24940

* MUESTRA NUMERO * 7

	FASE	'A''	FASE	 "в"	FASE "	c"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(7) = NODO(8) = NODO(8) = NODO(9) = NODO(10) =	2401.7700 2397.7360 2362.5190 2390.5570 2397.7360 2397.7360 2397.7360 2357.8110 2362.5190 2359.7050 2359.7050 2357.8110 2343.8520	.0000 1.6870 .8159 1.6219 1.6870 .7628 .8159 .8131 .7628 .8412	2401.7700 2365.3610 2329.8170 2360.3470 2360.4910 2317.9910 2360.3470 2360.3470 2360.3470 2357.6230 2360.3470 2360.3470	-120.0000 -117.0736 -117.1588 -117.3839 -117.1245 -117.2079 -117.3839 -117.3839 -117.3839 -117.3839	2401.7700 2354.9630 2348.0340 2307.5800 2348.6710 2346.4730 2299.2770 2307.5800 2304.9230 2290.9970 2299.2770	120.0000 122.9462 122.7905 122.1835 122.9377 122.7404 122.1550 122.1835 122.1602 122.1602 122.1550
NORMA DE LA FAS	SE "A" = 15.11220	NORMA DE L	A FASE "B" = 19.7	72560 NORMA	DE LA FASE "C" =	19.24940

* MUESTRA NUMERO * 8

	VOLT	AJES ESTIMADOS	FORMA POLAR			
	FASE	"A"	FASE	FASE "B"		'C"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) =	2401.7700	. 0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2397.7360	1.6870	2365.3610	-117.0736	2354.9630	122.9462
NODO(3) =	2397.7360	1.6870	2329.7720	-117.1619	2348.0640	122.7909
NODO(4) =	2362.4490	.8163	2360.3760	-117.3842	2307.5000	122.1829
NODO(5) =	2390.5590	1.6218	2360.4910	-117.1245	2348.6720	122.9377
NODO(6) =	2397.7360	1.6870	2317.9420	-117.2110	2346.5030	122.7408
NODO(7) =	2357.7410	.7632	2360.3760	-117.3842	2299.1970	122.1544
NODO(8) =	2362.4490	.8163	2360.3760	-117.3842	2307.5000	122.1829
NODO(9) =	2359.6350	.8135	2357.6520	-117.3877	2304.8430	122.1597
NODO(10) =	2357.7410	.7632	2360.3760	-117.3842	2290.9150	122.0785
NODO(11) =	2343.7760	.8415	2360.3760	-117.3842	2299.1970	122.1544
******	******	*****	******	*****	*****	****
NORMA DE LA FA	ASE "A" = 15.11220) NORMA DE L	A FASE "B" = 19.	72559 NORMA	DE LA FASE "C" =	19.24940
****	*****	****	*****	*****	*****	*****

* MUESTRA NUMERO * 9

VOLTAJES ESTIMADOS FORMA POLAR

	FASE "A"		FASE	FASE "B"		c"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) = NODO(2) = NODO(3) = NODO(3) = NODO(5) = NODO(6) = NODO(6) = NODO(7) = NODO(7) = NODO(9) = NODO(9) =	2401.7700 2338.9910 2338.9910 2331.6720 2331.6720 2338.9910 2298.1610 2303.0390 2300.1260 2298.1610	.0000 7160 7160 -1.6660 7876 7160 -1.7246 -1.6660 -1.6701 -1.7246	2401.7700 2302.7090 2266.1760 2298.4060 2297.7810 2298.4060 2298.4060 2298.4060 2298.4060	-120.0000 -121.9502 -122.0443 -122.2424 -122.0008 -122.0965 -122.2424 -122.2424 -122.2424 -122.2424	2401.7700 2308.8500 2301.9050 2302.2520 2300.3450 2250.3400 2256.1910 2241.8790	120.0000 117.7253 117.5643 116.9325 117.7164 117.5124 116.9028 116.925 116.9095 116.8236
NODO(11) =	2283.8350	-1.6421	2298.4060	-122.2424	2250.3400	116.9028

NORMA DE LA FASE "A" = .00104 NORMA DE LA FASE "B" = .02823 NORMA DE LA FASE "C" = .00083

***************************************	************************
NORMA MINIMA ENCONTRADA PARA LA FASE "A" = .00104	CORRESPONDE A LA MUESTRA NUMERO = 9
NORMA MINIMA ENCONTRADA PARA LA FASE "B" = .02821	CORRESPONDE A LA MUESTRA NUMERO = 2
NORMA MINIMA ENCONTRADA PARA LA FASE "C" = .00083	CORRESPONDE A LA MUESTRA NUMERO = 9
*******	**********
LA NORMA MINIMA ENCONTRADA ES = .00083 CORI	RESPONDE A LA MUESTRA NUMERO = 9

***************************************	***************************************	***************************************	****

**************************************	**************** ESTRA NUMERO	**************************************	******	******	*****	*****
*****	*****	************	*****	******	*****	*****
<<<<<<<	<<<<<<	<< VOLTAJES E	STIMADOS DEL S	ISTEMA >>>>>>	»>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	VOLTA	JES ESTIMADOS	FORMA POLAR			
	FASE	"A"	FASE	"в"	FASE "	c"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) = NODO(3) =	2338./4/0 2338.7470	/151 - 7151	2302.8810	-121.9618	2308.9900	117.7288
NODO(4) =	2302.7920	-1.6654	2298.5790	-122.2539	2259.0550	116.9361
NODO(5) =	2331.4270	7867	2297.9530	-122.0124	2302.3920	117.7199
NODO(6) = NODO(7) =	2338.7470	-1,7239	2303.2580	-121.1290	2301.0930	117.9189
NODO(8) =	2302.7920	-1.6654	2298.5790	-122.2539	2259.0550	116.9361
NODO(9) =	2299.8790	-1.6694	2295.8410	-122.2579	2256.3320	116.9131
NODO(10) = NODO(11) =	2297.9140	-1.7239	2298.5790	-122.2539	2242.0200	116.82/3
****	***	***				****
NORMA DE LA FAS	SE "A" = .00008 *****	NORMA DE LA ******	A FASE "B" = 8.12	616 NORMA D	E LA FASE "C" = *******************************	3.20241 *****
**************************************	**************************************	**************************************	*******	******************	******	******
<<<<<<<	<<<<<<	<< VOLTAJES E	STIMADOS DEL S	ISTEMA >>>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	VOLTA	JES ESTIMADOS	FORMA POLAR			
	FASE	"A"	FASE	"в"	FASE "	с"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) =	2401.7700	. 0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2339.1280	7163	2302.6000	-121.9439	2308.7750	117.7233
NODO(3) =	2339.1280	7163	2266.0730	-122.0348	2301.8060	117.5617
NODO(4) = NODO(5) =	2303.1770	-1.0003	2298.2950	-122.2302	2258.8390	117,7144
NODO(6) =	2339.1280	7163	2253.9190	-122.0870	2300.2460	117.5098
NODO(7) =	2298.3000	-1.7248	2298.2950	-122.2362	2250.2620	116.9007
NODO(8) = NODO(9) =	2303.1770	-1.6703	2298.2950	-122.2302	2256.0590	116.9074
NODO(10) =	2298.3000	-1.7248	2298.2950	-122.2362	2241.8010	116.8215
NODO(11) =	2283.9750	-1.6424	2298.2950	-122.2362	2250.2620	116.9007
*******	*****	******	*****	*****	****	*****
NORMA DE LA FAS	SE "A" = .00156	NORMA DE LA	A FASE "B" = .040	580 NORMA DE	E LA FASE "C" =	.00146 ************************************
* MUI	ESTRA NUMERO	* 3	*****	******	*****	*****
<<<<<<<	~~~~~	<< VOLTAJES E	STIMADOS DEL S	ISTEMA >>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	VOLTA	JES ESTIMADOS	FORMA POLAR			
		"		"o"		
	MAGNITUD	A	MAGNITUD	ANGULO	MAGNITUD	ANGULO
	VOLTS	GRADOS	VOLTS	GRADOS	VOLTS	GRADOS
NODO $(1) =$	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2338.7470	7151	2302.8810	-121.9618	2308.9900	117.7288
NODO(3) = NODO(4) =	2338.7470	-1,6654	2200.3580	-122.052/	2302.0200	116,9361
NODO(5) =	2331.4270	7867	2297.9530	-122.0124	2302.3920	117.7199
NODO(6) =	2338.7470	7151	2254.2040	-122.1049	2300.4590	117.5152
NODO(7) = NODO(8) =	2302.7920	-1.6654	2298.5800	-122.2039	2250.4810	116,9361
NODO(9) =	2299.8790	-1.6694	2295.8410	-122.2579	2256.3320	116.9131
NODO(10) =	2297.9130	-1.7239	2298.5800	-122.2539	2242.0200	116.8273
NODU(II) =	2203.3030	-1.0414	2298.3800	-122.2339	2230.4810	110.9003
**************************************	***************************************	**************************************	**************************************	**************************************	**************************************	**************
**************************************	DL A = .00008 *************	1NUKIMA DE LA	лгазе в = .010 ************	037 INUKMA DE	LA FASE U =	.00009 ******

• C.3 Archivo de Salida para el Sistema de Prueba Caso 3.

* MUESTRA NUMERO * 4

	VOLTA	JES ESTIMADOS	FORMA POLAR			
	FASE	"A"	FASE	"в"	FASE "	c"
	MAGNITUD	ANGULO	MAGNITUD	ANGULO	MAGNITUD	ANGULO
	VOLTS	GRADOS	VOLTS	GRADOS	VOLTS	GRADOS
NODO(1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2338.7470	7151	2302.8810	-121.9618	2308.9900	117.7288
NODO(3) =	2338.7470	7151	2266.3580	-122.0527	2302.0200	117.5672
NODO(4) =	2302.7920	-1.6654	2298.5790	-122.2539	2259.0570	116.9361
NODO(5) =	2331.4270	7867	2297.9530	-122.0124	2302.3920	117.7199
NODO(6) =	2338.7470	7151	2254.2040	-122.1049	2300.4590	117.5152
NODO(7) =	2297.9130	-1.7239	2298.5790	-122.2539	2250.4820	116.9065
NODO(8) =	2302.7920	-1.6654	2298.5790	-122.2539	2259.0570	116.9361
NODO(9) =	2299.8790	-1.6694	2295.8400	-122.2579	2256.3330	116.9131
NODO(10) =	2297.9130	-1.7239	2298.5790	-122.2539	2242.0210	116.8273
NODO(11) =	2283.5850	-1.6414	2298.5790	-122.2539	2250.4820	116.9065
**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************

* MUESTRA NUMERO * 5

VOLTAJES ESTIMADOS FORMA POLAR

	FASE "A"		FASE	FASE "B"		'C''
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) =	2401.7700	. 0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2359.8290	-1.9770	2365.4330	-119.1258	2274.7310	118.8375
NODO(3) =	2359.8290	-1.9770	2377.4860	-118,2935	2268.8620	119.0861
NODO(4) =	2324.0620	-2.9004	2361.5540	-119.4346	2225.0190	118.0221
NODO(5) =	2352.5090	-2.0466	2360.6590	-119.1772	2268.1590	118.8294
NODO(6) =	2359.8290	-1.9770	2365.9510	-118.3392	2267.1390	119.0376
NODO(7) =	2319.3160	-2.9561	2361.5540	-119.4346	2216.3930	117.9904
NODO(8) =	2324.0620	-2.9004	2361.5540	-119.4346	2225.0190	118.0221
NODO(9) =	2321.1490	-2.9034	2358.8620	-119,4390	2222,2850	117,9985
NODO(10) =	2319.3160	-2.9561	2361.5540	-119,4346	2207.8020	117,9088
NODO(11) =	2305.1200	-2.8751	2361.5540	-119.4346	2216.3930	117.9904

NORMA DE LA FASE "A" = .21564 NORMA DE LA FASE "B" = 11.57088 NORMA DE LA FASE "C" = 4.46552

* MUESTRA NUMERO * 6

	VOLT	AJES ESTIMADOS	FORMA POLAK			
	FASE	"A"	FASE	FASE "B"		'C"
	MAGNITUD	ANGULO	MAGNITUD	ANGULO	MAGNITUD	ANGULO
	VOLTS	GRADOS	VOLTS	GRADOS	VOLTS	GRADOS
NODO(1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2339.1290	7164	2302.6010	-121.9439	2308.7730	117.7233
NODO(3) =	2339.1290	7164	2266.0740	-122.0347	2301.8040	117.5617
NODO(4) =	2303.1790	-1.6664	2298.2970	-122.2362	2258.8340	116.9304
NODO(5) =	2331.8100	7880	2297.6720	-121.9945	2302.1740	117.7144
NODO(6) =	2339.1290	7164	2253.9200	-122.0870	2300.2440	117.5098
NODO(7) =	2298.3020	-1.7249	2298.2970	-122.2362	2250.2590	116.9007
NODO(8) =	2303.1790	-1.6664	2298.2970	-122.2362	2258.8340	116.9304
NODO(9) =	2300.2660	-1.6704	2295.5580	-122.2402	2256.1110	116.9074
NODO(10) =	2298.3020	-1.7249	2298.2970	-122.2362	2241.7970	116.8215
NODO(11) =	2283.9760	-1.6424	2298.2970	-122.2362	2250.2590	116.9007
****	*****	*****	******	*****	*****	*****
NORMA DE LA FA	ASE "A" = .00157	NORMA DE LA	A FASE "B" = .040	581 NORMA DE	E LA FASE "C" =	.00155
****	*****	*****	*****	*****	*****	*****

* MUESTRA NUMERO * 7

		FORMA POLAR	JES ESTIMADOS	VOLTA	
FASE "C"	в"	FASE '	"A"	FASE	
TUD ANGULO TS GRADOS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	
401.7700 120.0000 308.9900 117.7288 302.0200 117.5672 259.0570 116.9361 302.3920 117.7199 300.4590 117.5152 250.4810 116.9065 259.0570 116.9361 250.4810 116.9065 259.0570 116.9361 259.0570 116.9361 254.0310 116.9131	-120.0000 -121.9618 -122.0527 -122.2539 -122.0124 -122.1049 -122.2539 -122.2539 -122.2579 -122.2579	2401.7700 2302.8810 2266.3580 2298.5790 2297.9530 2254.2040 2298.5790 2298.5790 2295.8400 2295.8400	.0000 7151 7151 -1.6654 7867 7151 -1.7239 -1.6654 -1.6694	2401.7700 2338.7470 2338.7470 2302.7920 2331.4270 2338.7470 2338.7470 2338.7470 2297.9130 2302.7920 2299.8780 2209.8780	NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(7) = NODO(8) = NODO(9) =
250.4810 116.9065	-122.2539	2298.5790	-1.6414	2283.5850	NODO(10) =
******	******	*****	******	*****	****
SE "C" = .00008	37 NORMA DI	A FASE "B" = $.016$	NORMA DE LA	ASE "A" = .00007	NORMA DE LA F
FASE C TUD ANGULO TS GRADOS	ANGULO GRADOS -120.0000 -121.9618 -122.0527 -122.2539 -122.0124 -122.1049 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539	ASE (ACC) MAGNITUD VOLTS 2401.7700 2302.8810 2266.3580 2298.5790 2297.9530 2297.9530 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790	A ANGULO GRADOS 0000 7151 -1.6654 7867 7151 -1.7239 -1.6654 -1.7239 -1.6694 -1.7239 -1.6414 NORMA DE L/	ASE "A" = .00007	NODO(1) = NODO(2) = NODO(3) = NODO(5) = NODO(6) = NODO(6) = NODO(6) = NODO(8) = NODO(8) = NODO(10) = NODO(11) = NODO(11) =

* MUESTRA NUMERO * 8

	FASE	"A"	FASE	FASE "B"		FASE "C"	
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(7) = NODO(7) = NODO(9) = NODO(9) =	2401.7700 2338.7470 2338.7470 2331.4270 2331.4270 2338.7470 2297.9130 2302.7920 2299.8790 2299.8790 2299.9130	.0000 7151 7151 -1.6654 7867 7151 -1.7239 -1.6654 -1.6694 -1.7239	2401.7700 2302.8810 2315.1430 2298.5790 2303.2580 2298.5790 2298.5790 2298.5790 2295.8400 2295.8400	-120.0000 -121.9618 -121.0796 -122.2539 -122.0124 -121.1290 -122.2539 -122.2539 -122.2539 -122.2539	2401.7700 2308.9900 2302.7030 2259.0570 2302.3920 2301.0930 2250.4820 2259.0570 2256.3330 2242.0210	120.0000 117.7288 117.9694 116.9361 117.7199 117.9189 116.9065 116.9361 116.9131 116.8273	

NORMA DE LA FASE "A" = .00010 NORMA DE LA FASE "B" = 8.12616 NORMA DE LA FASE "C" = 3.20241

* MUESTRA NUMERO * 9

VOLTAJES ESTIMADOS FORMA POLAR

	FASE	"A"	FASE	"в"	FASE "	'C"
	MAGNITUD	ANGULO	MAGNITUD	ANGULO	MAGNITUD	ANGULO
	VOLTS	GRADOS	VOLTS	GRADOS	VOLTS	GRADOS
NODO(1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2338.7470	7151	2302.8810	-121.9618	2308.9900	117.7288
NODO(3) =	2338.7470	7151	2266.3580	-122.0527	2302.0200	117.5672
NODO(4) =	2302.7920	-1.6654	2298.5790	-122.2539	2259.0570	116.9361
NODO(5) =	2331.4270	7867	2297.9530	-122.0124	2302.3920	117.7199
NODO(6) =	2338.7470	7151	2254.2040	-122.1049	2300.4590	117.5152
NODO(7) =	2297.9130	-1.7239	2298.5790	-122.2539	2250.4810	116.9065
NODO(8) =	2302.7920	-1.6654	2298.5790	-122.2539	2259.0570	116.9361
NODO(9) =	2299.8790	-1.6694	2295.8400	-122.2579	2256.3330	116.9131
NODO(10) =	2297.9130	-1.7239	2298.5790	-122.2539	2242.0210	116.8273
NODO(11) =	2283.5850	-1.6414	2298.5790	-122.2539	2250.4810	116.9065
******	*****	*****	******	*****	*****	*****
NORMA DE LA FA	SE "A" =	NORMA DE LA	A FASE "B" $=$ 01	637 NORMA DI	E LA FASE "C" =	00008

NORMA MINIMA ENCONTRADA PARA LA FASE "A" = .00006 CORRESPONDE A LA MUESTRA NUMERO = 9
NORMA MINIMA ENCONTRADA PARA LA FASE "B" = .01637 CORRESPONDE A LA MUESTRA NUMERO = 9
NORMA MINIMA ENCONTRADA PARA LA FASE "C" = .00008 CORRESPONDE A LA MUESTRA NUMERO = 7

LA NORMA MINIMA ENCONTRADA ES = .00006 CORRESPONDE A LA MUESTRA NUMERO = 9

• C.4 Archivo de Salida para el Sistema de Prueba Caso 4.

**************************************	**************************************	**************************************	**************************************	**************************************	*****	****
			STIMADOS DEL S			
	VOLT	AJES ESTIMADOS	FORMA POLAR			
	FASE	"A"	FASE	"в"	FASE "	'C"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(5) = NODO(7) = NODO(7) = NODO(9) = NODO(10) = NODO(10) = NODO(11) =	2401.7700 2338.7470 2338.7470 2302.7920 2331.4270 2338.7470 2297.9140 2302.7920 2299.8790 2297.9140 2283.5860	.0000 7151 7151 -1.6654 7867 7151 -1.7239 -1.6654 -1.6694 -1.7239 -1.6414	2401.7700 2302.8810 2266.3490 2298.5790 2297.9530 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790	-120.0000 -121.9618 -122.0559 -122.2539 -122.0124 -122.1081 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539	2401.7700 2308.9900 2302.0430 2259.0550 2302.3920 2300.4830 2250.4800 2250.4800 2256.3320 2256.3320 2250.4800 ******************	120.0000 117.7288 117.5678 116.9361 117.7199 117.5158 116.9064 116.9064 116.9064
* MU *******	ESTRA NUMER(*************) * 2 ********	*****	*****	****	*****
~~~~~		<<< VOLTAJES E	STIMADOS DEL S	ISTEMA >>>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	VOLT	AJES ESTIMADOS	FORMA POLAR			
	FASE MAGNITUD VOLTS	"A" ANGULO GRADOS	FASE MAGNITUD VOLTS	"B" ANGULO GRADOS	FASE " MAGNITUD VOLTS	C" ANGULO GRADOS
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(5) = NODO(6) = NODO(7) = NODO(8) = NODO(9) = NODO(10) = NODO(11) =	2401.7700 2338.7470 2302.7920 231.4270 2338.7470 2338.7470 2338.7470 2397.9130 2302.7920 2299.8790 2299.8790 2297.9130 2283.5850	.0000 7151 7151 -1.6654 7867 7151 -1.7239 -1.6654 -1.6694 -1.7239 -1.6414	2401.7700 2302.8810 2266.3490 2297.9530 2297.9530 2298.5790 2298.5790 2298.5790 2295.8400 2298.5790 2298.5790	-120.0000 -121.9618 -122.0559 -122.0124 -122.1081 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539	2401.7700 2308.9900 2302.0430 2302.3920 2300.4830 2250.4810 2250.570 2256.3330 2255.4800 2250.4810	120.0000 117.7288 117.5678 116.9361 117.7199 117.5158 116.9065 116.9361 116.931 117.1227 116.9065
****	*****	*****	******	*****	*****	*****

NORMA DE LA FASE "A" = .00007 NORMA DE LA FASE "B" = .00003 NORMA DE LA FASE "C" = 3.41059

**************************************	**************************************	**************************************	*****	*****	*****	*****
******	· • • • • • • • • • • • • • • • • • • •	<< VOLTAJES E	STIMADOS DEL S	ISTEMA >>>>>>	····	·····
	VOLTA	JES ESTIMADOS	FORMA POLAR			
		"."		""		
	MAGNITUD VOLTS	A ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO( 1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2338.9920	7160	2302.7090	-121.9502	2308.8500	117.7253
NODO(3) = NODO(4) =	2338.9920	/160	2266.1/50	-122.0443	2301.9040	116 9324
NODO(5) =	2331.6730	7876	2297.7810	-122.0008	2302.2510	117.7164
NODO(6) =	2338.9920	7160	2254.0210	-122.0965	2300.3440	117.5124
NODO(7) = NODO(8) =	2298.1030	-1.6660	2298.4060	-122.2424 -122.2424	2250.3370	116.9028
NODO(9) =	2300.1290	-1.6701	2295.6670	-122.2464	2256.1890	116.9094
NODO(10) =	2298.1630	-1.7246	2298.4060	-122.2424	2241.8760	116.8236
**************************************	ASE "A" = .00113	**************************************	**************************************	**************************************	E LA FASE "C" = .	**************************************
****	****	****	*****	****	****	****
* <b>M</b> **********	UESTRA NUMERC	) * 4 :*********	*****	*****	****	****
<<<<<<<		<< VOLTAJES E	STIMADOS DEL S	ISTEMA >>>>>>	»>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	VOLTA	JES ESTIMADOS	FORMA POLAR			
	FASE	"A"	FASE	"в"	FASE '	'c"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2339.1280	/163	2302.6000	-121.9439	2308.7730	117.7233
NODO(4) =	2303.1780	-1.6663	2298.2960	-122.2362	2258.8350	116.9303
NODO(5) =	2331.8100	7879	2297.6710	-121.9945	2302.1750	117.7144
NODO(6) = NODO(7) =	2339.1280	/163	2253.9190	-122.08/0	2300.2450	117.5098
NODO(8) =	2303.1780	-1.6663	2298.2960	-122.2362	2258.8350	116.9303
NODO(9) =	2300.2660	-1.6704	2295.5570	-122.2402	2256.1110	116.9073
NODO(10) = NODO(11) =	2298.3010	-1.7249	2298.2960	-122.2362	2241./980	116.8215
****	*****	******	*****	****	*****	*****
NORMA DE LA F	ASE "A" = 00160	NORMA DE L	A FASE "B" = $04$	678 NORMA DE	ELA FASE "C" =	00156
*****	*****	*****	****	****	*****	****
******	******	******	*****	*****	*****	*****
* M *********	UESTRA NUMERO	) * 5 :********	******	*****	*****	*****
<<<<<<		<< VOLTAJES E	STIMADOS DEL S	ISTEMA >>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	VOL 14	JES ESTIMADOS	FORMA POLAR			
	FASE	"A"	FASE	"B"	FASE "	C"
	VOLTS	GRADOS	VOLTS	GRADOS	VOLTS	GRADOS
NODO(1) =	2401.7700	.0000	2401.7700	-120.0000	2401.7700	120.0000
NODO(2) =	2338.7470	7151	2302.8810	-121.9618	2308.9900	117.7288
NODO(3) = NODO(4) =	2302.7920	-1.6654	2200.3490	-122.2539	2259.0570	116.9361
NODO(5) =	2331.4270	7867	2297.9530	-122.0124	2302.3920	117.7199
NODO(6) =	2338.7470	7151	2254.1950	-122.1081	2300.4830	117.5158
NODO(7) = NODO(8) =	2297.9130	-1.7239	2298.5790	-122.2539	2250.4820	116.9065
NODO(9) =	2299.8780	-1.6694	2295.8400	-122.2579	2256.3330	116.9131
NODO(10) =	2297.9130	-1.7239	2298.5790	-122.2539	2242.0210	116.8273
NODU(II) =	2203.303V	-1.0414	2298.3790	-122.2339	2230.4820	TT0. 3000
NORMA DE LA F	ASE "A" = .00012	NORMA DE L	A FASE "B" = .00	004 NORMA DF	E LA FASE "C" =	.00005

****

#### * MUESTRA NUMERO * 6

	VOLT	AJES ESTIMADOS	FORMA POLAR				
	FASE	"A"	FASE	"в"	FASE "	c"	
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(7) = NODO(8) = NODO(9) = NODO(10) = NODO(11) =	2401.7700 2338.9920 2338.9920 2333.0410 2331.6730 2338.9920 2298.1630 2303.0410 2303.0410 2300.1280 2298.1630 2288.1630	.0000 7160 7160 -1.6661 7876 7160 -1.7246 -1.6661 -1.6701 -1.7246 -1.6421	2401.7700 2302.7090 2266.1750 2298.4060 2297.7810 2298.4060 2298.4060 2298.4060 2298.4060 2298.4060	-120.0000 -121.9502 -122.0443 -122.2424 -122.0065 -122.2424 -122.2424 -122.2424 -122.2424 -122.2424 -122.2424	2401.7700 2308.8500 2301.9040 2258.9140 2302.2520 2300.3450 2250.3380 2258.9140 2256.1900 2241.8770 2250.3380	120.0000 117.7253 117.5643 116.9324 117.7164 117.7164 116.9028 116.928 116.925 116.8236 116.925	
*****	***************************************						
NORMA DE LA FA	ASE "A" = .00012	NORMA DE LA	A FASE "B" = .02	819 NORMA DI	E LA FASE "C" =	.00086	

#### * MUESTRA NUMERO * 7

VOLTAJES ESTIMADOS FORMA POLAR

	FASE	"A"	FASE "B"		FASE "C"	
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) = NODO(2) =	2401.7700 2338.7470	. 0000	2401.7700 2302.8810	-120.0000	2401.7700	120.0000
NODO(3) = NODO(4) =	2338.7470	7151	2266.3580	-122.0527	2302.0200	117.5672
NODO(5) = NODO(6) =	2331.4270	7867	2297.9530	-122.0124	2302.3920	117.7199
NODO(7) = NODO(8) =	2297.9130	-1.7239	2298.5790	-122.2539	2250.4810	116.9065
NODO(9) =	2299.8780	-1.6694	2295.8400	-122.2579	2256.3330	116.9131
NODO(10) = NODO(11) =	2283.5850	-1.6414	2298.5790	-122.2539	2250.4810	116.9065

NORMA DE LA FASE "A" = .00011 NORMA DE LA FASE "B" = .01637 NORMA DE LA FASE "C" = 3.41059

#### * MUESTRA NUMERO * 8

	FASE	"A"	FASE	"B" FASE		'c"	
	MAGNITUD	ANGULO	MAGNITUD	ANGULO	MAGNITUD	ANGULO	
	VOLTS	GRADOS	VOLTS	GRADOS	VOLTS	GRADOS	
NODO(1) =	2401.7700	. 0000	2401.7700	-120.0000	2401.7700	120.0000	
NODO(2) =	2339.1280	7163	2302.5990	-121.9439	2308.7750	117.7233	
NODO(3) =	2339.1280	7163	2266.0730	-122.0348	2301.8070	117.5617	
NODO(4) =	2303.1770	-1.6663	2298.2950	-122.2363	2258.8390	116.9304	
NODO(5) =	2331.8090	7879	2297.6710	-121.9945	2302.1770	117.7144	
NODO(6) =	2339.1280	7163	2253.9180	-122.0870	2300.2480	117.5098	
NODO(7) =	2298.3000	-1.7248	2298.2950	-122.2363	2250.2630	116.9007	
NODO(8) =	2303.1770	-1.6663	2298.2950	-122.2363	2258.8390	116.9304	
NODO(9) =	2300.2650	-1.6703	2295.5560	-122.2402	2256.1150	116.9074	
NODO(10) =	2298.3000	-1.7248	2298.2950	-122.2363	2241.8020	116.8215	
NODO(11) =	2283.9740	-1.6424	2298.2950	-122.2363	2250.2630	116.9007	
*****	***************************************						

NORMA DE LA FASE "A" = .00157 NORMA DE LA FASE "B" = .04672 NORMA DE LA FASE "C" = .00143

******	*****	****	******	*****	*****	*****
* N	MUESTRA NUMERO	) * 9 ·****************	*****	*****	****	*****
<<<<<<<		<	STIMADOS DEL S	ISTEMA >>>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	VOLT	JES ESTIMADOS	FORMA POLAR			
	FASE	"A"	FASE	"в"	FASE "	c"
	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS	MAGNITUD VOLTS	ANGULO GRADOS
NODO(1) = NODO(2) = NODO(3) = NODO(4) = NODO(5) = NODO(6) = NODO(6) = NODO(8) = NODO(10) = NODO(10) = NODO(11) = ************************************	2401.7700 238.7470 238.7470 2302.7920 231.4270 233.7470 2297.9130 2302.7920 2299.8780 2297.9130 2283.5850 FASE "A" = .00008	.0000 7151 7151 -1.6654 7867 7151 -1.7239 -1.6654 -1.7239 -1.6694 -1.7239 -1.6414	2401.7700 2302.8810 2266.3570 2298.5790 2297.9530 2294.2040 2298.5790 2298.5790 2298.5790 2298.5790 2298.5790	-120.0000 -121.9618 -122.0527 -122.2539 -122.0124 -122.1049 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539 -122.2539	2401.7700 2308.9900 2302.0200 2302.3920 2300.4600 2250.4810 2259.0570 2256.3330 2253.4800 2250.4810	120.0000 117.7288 117.5672 116.9361 117.7199 117.5152 116.9065 116.9361 116.9131 117.1227 116.9065 ************************************
******	*****	*******	******	*****	*****	*****
NORMA MINIM	A ENCONTRADA PA	ARA LA FASE "A'	'= .00004 COR	RESPONDE A LA	MUESTRA NUMI	ERO = 1
NORMA MINIM	A ENCONTRADA PA	ARA LA FASE "B"	' = .00002 COR	RESPONDE A LA	MUESTRA NUME	ERO = 1
NORMA MINIM	A ENCONTRADA PA	ARA LA FASE "C"	'= .00005 COR	RESPONDE A LA	MUESTRA NUME	ERO = 5
******	*****	*******	*******	*****	*****	*****
LA NO	ORMA MINIMA ENC	ONTRADA ES =	.00002 CORRE	SPONDE A LA MI	UESTRA NUMERO	)= 1
******	*****	******	*****	******	*****	*****

# APÉNDICE D

# CODIGO DEL PROGRAMA EERD Y LOCALIZACION ÓPTIMA.

## **D.1 Introducción.**

El programa de computadora para el algoritmo de estimación de estado y localización óptima de las mediciones fue desarrollado en lenguaje de programación FORTRAN 90, donde varias subrutinas conforman el algoritmo. A continuación se presentan algunas de las subrutinas tratando de mostrar cómo funciona el algoritmo.

## D.2 Descripción del Programa Fuente.

El programa principal se presenta en la parte de código siguiente:

PROGRAM ESTDTRIFASICO USE VOLTAJES AUX IMPLICIT NONE INTEGER :: ite.conver.R.NoMUESTRAS ite=1 conver=0 CALL ABREARCH_DATOS CALL LEE_DATOS CALL VOLTAJES CALL LEE NIVELES DO WHILE(ite .LE. 15.AND.conver.EQ.0) CALL BARRIDO_REGRESIVO CALL BARRIDO_PROGRESIVO CALL CONVERGENCIA(ite, conver) ite=ite+1 END DO CALL CALCULO_DE_FLUJOS WRITE(*,22) 22 FORMAT(/10x,'DESEA REALIZAR LOCALIZACION OPTIMA DE MEDICIONES?') WRITE(*,23) 23 FORMAT(//10x,'SELECCIONA TU OPCION') WRITE(*.24) 24 FORMAT(/10x,'1 ES SI ------ 2 ES NO =' \$) READ(*,*)R IF(R.EQ.1)THEN WRITE(*,25) 25 FORMAT(/10x,'NUMERO DE MUESTRAS ALEATORIAS='\$) READ(*,*)NoMUESTRAS WRITE(*.27) 27 FORMAT(/10x,'COMIENZA EL ALGORITMO PARA BUSCAR LAS MUESTRAS ALEATORIAS') CALL MUESTRAS_ALEATORIAS(NoMUESTRAS) ELSE WRITE(*,28)

28 FORMAT(//10x,'SE HA TERMINADO EL ALGORITMO COMPUTACIONAL') GOTO 30 END IF CALL LOCALIZACION_OPTIMA(NoMUESTRAS) 30 PAUSE END PROGRAM ESTDTRIFASICO En esta parte del programa principal se han omitido las partes correspondientes a comentarios mostrado únicamente el llamado de las subrutinas las cuales se describen de la siguiente manera: ABREARCH DATOS – En esta subrutina se abren los archivos que contienen los datos correspondientes a los segmentos de líneas, las mediciones del sistema.

CALL LEE_DATOS – Aquí se leen los datos de los archivo abiertos se leen por ejemplo número de nodos, elementos, impedancias y por supuesto las mediciones.

CALL VOLTAJES – Con esta subrutina se inicializan los voltajes al perfil plano para todos los nodos del sistema.
CALL LEE_NIVELES - Se forman los niveles para el sistema.

Posteriormente se entra a un ciclo en el cual se hace el llamado a las siguientes subrutinas.

CALL BARRIDO_REGRESIVO – Como su nombre lo indica comienza este barrido, aquí mismo se hacen llamados de mas subrutinas que tiene que ver con el algoritmo de estimación de estado resulto por mínimos cuadrados ponderados, estas se enlistan a continuación.

CALL Zabc_pq
 CALL BUSCA_MEDICIONES
 CALL JACOBIANO1MF
 CALL JACOBIANO2BF
 CALL JACOBIANO3F

Conforme se va avanzando en el barrido regresivo en cada elemento de rama se llama a 1 y se forma la matriz de impedancia, se identifica el número de fases, para pasar después a 2, donde se busca que tipo de mediciones que se tienen en cada rama, con esta información se continua con la formación del Jacobiano dependiendo del tipo de rama que se tenga, subrutinas 3, 4 y 5. A continuación se muestran partes de código importantes de cada subrutina. 1.-SUBROUTINE Zabc_pq(ele,Zabc,NoFASE)

USE DATOS_DE_LA_RED IMPLICIT NONE INTEGER ::ele,NoFASES COMPLEX*8, DIMENSION(3,3) ::Zabc IF(Zabc(1,1).NE.0.AND.Zabc(2,2).NE.0.AND.Zabc(3,3).NE.0 )THEN NoFASES=3 ELSE IF (Zabc(1,1).NE.0.AND.Zabc(2,2).NE.0)THEN NoFASES=2 ELSE IF (Zabc(1,1).NE.0.AND.Zabc(3,3).NE.0)THEN NoFASES=2 ELSE IF (Zabc(2,2).NE.0.AND.Zabc(3,3).NE.0)THEN NoFASES=2 ELSE IF (Zabc(1,1).NE.0)THEN NoFASES=1 ELSE IF (Zabc(2,2).NE.0)THEN NoFASES=1 ELSE IF (Zabc(3,3).NE.0)THEN NoFASES=1 END IF END IF END IF END IF END IF END IF END SUBROUTINE Zabc_pq

2 -SUBROUTINE BUSCA MEDICIONES USE DATOS_DE_LA_RED USE DATOS_DE_CARGAS USE DATOS_DE_MEDICIONES IMPLICIT NONE INTEGER ::banderal,iteracion INTEGER ::pele,qele,i,MV,NoFASES COMPLEX*8,DIMENSION(3,3) ::Zabc INTEGER ::bandera,iden_1,iden_2,iden_3,iden_4 INTEGER ::cont **BUSCA MEDICIONES DE VOLTAJE** bandera=0 IF (NOmedMagVolt.NE.0) THEN DO MV=1,NOmedMagVolt IF(ZMVOLT(1,MV) .EQ. gele)THEN ZMVOLTA=ZMVOLT(2,MV) ZMVOLTB=ZMVOLT(3.MV) ZMVOLTC=ZMVOLT(4,MV) END IF END DO END IF BUSCA MEDICIONES DE FLUJO DE POTENCIA bandera=0 IF (NOmedFluPot.NE.0) THEN DO i=1,NOmedFluPot IF ((pm(i).EQ.pele).AND. (qm(i) .EQ. qele)) THEN ZMFPA=ZMFP(2,i) ZMFPB=ZMFP(3,i) ZMFPC=ZMFP(4,i) cont=cont+2 END IF END DO END IF BUSCA MEDICION DE FLUJO DE CORRIENTE bandera=0 IF (NOmedMagCorr.NE.0) THEN DO i=1,NOmedMagCorr IF ((pcm(i).EQ.pele).AND. (qcm(i) .EQ. qele)) THEN ZMIMagA=ZMC(2,i) ZMIMagB=ZMC(3,i) ZMIMagC=ZMC(4,i) iden 3=1END IF cont=cont+1 END IF END DO END IF IF (NoFASES.EQ.1)THEN DO WHILE (bandera1.NE.1.0) CALLJACOBIANO1MF iteracion=iteracion+1 END DO END IF END SUBROUTINE BUSCA MEDICIONES

Obviamente antes cerrar la subrutina anterior se hace el llamado también de 4 y 5, continuando con la estimación de estado con la invocación de otra subrutina de nombre CALL ESTIMACION1MF.

Esta se encarga de realizar los cálculos correspondientes al método de mínimos cuadrados ponderados, obteniendo el vector de estado.

Con esto se termina el barrido regresivo. Pasando a la subrutina CALL BARRIDO_PROGRESIVO.

SUBROUTINE BARRIDO_PROGRESIVO USE DATOS DE LA RED USE DATOS_DE_CARGAS USE VOLTAJES_AUX USE Sequivalente USE MATRIZ Zabc USE DATOS_DE_MEDICIONES IMPLICIT NONE INTEGER :: ele CALL Zabc_pq(ele,Zabc,NoFASES)  $Vnodo_i(1,1) = Vnodo_A(pc)$  $Vnodo_i(2,1)=Vnodo_B(pc)$ Vnodo_i(3,1)=Vnodo_C(pc) T(1,1)=CONJG(Seq_A(ele)/Vnodo_A(pc)) T(2,1)=CONJG(Seq_B(ele)/Vnodo_B(pc)) T(3,1)=CONJG(Seq_C(ele)/Vnodo_C(pc)) Irama=T Vnodo_j=Vnodo_i-MATMUL(Zabc,T) Vnodo_A(qc)=Vnodo_j(1,1)  $Vnodo_B(qc)=Vnodo_j(2,1)$  $Vnodo_C(qc)=Vnodo_j(3,1)$ END SUBROUTINE BARRIDO_PROGRESIVO

Con esta corrección de voltaje que se hizo en el barrido progresivo comprobamos la convergencia del sistema mediante; CALL CONVERGENCIA(ite,conver)

SUBROUTINE CONVERGENCIA(ite,conver) USE VOLTAJES_AUX USE DATOS_DE_LA_RED IMPLICIT NONE ::ite,i,conver,NODO INTEGER REAL*8 ::tol REAL*8 ::DIFAUX FA, DIFAUX FB, DIFAUX FC tol=0.001 IF(ite.EO.1)THEN DO i=1,NOnodos CONV FA(i,ite)=Vnodo A(i) CONV_FB(i,ite)=Vnodo_B(i) CONV_FC(i,ite)=Vnodo_C(i) END DO END IF IF (ite>=2) THEN DO i=1,NOnodos CONV_FA(i,ite)=Vnodo_A(i) CONV FB(i,ite)=Vnodo B(i) CONV_FC(i,ite)=Vnodo_C(i) END DO DO i=1,NOnodos DIF_FA(i)=abs((ATAN2D(AIMAG(CONV_FA(i,ite)),REAL( CONV_FA(i,ite))))-(ATAN2D(AIMAG(CONV_FA(i,ite-1)),REAL(CONV_FA(i,ite-1)))))

DIF_FB(i)=abs((ATAN2D(AIMAG(CONV_FB(i,ite)),REAL( CONV_FB(i,ite))))-(ATAN2D(AIMAG(CONV_FB(i,ite-1)),REAL(CONV_FB(i,ite-1)))))

DIF_FC(i)=abs((ATAN2D(AIMAG(CONV_FC(i,ite)),REAL( CONV_FC(i,ite))))-(ATAN2D(AIMAG(CONV_FC(i,ite-1)),REAL(CONV_FC(i,ite-1))))) END DO DIFAUX_FA=MAXVAL(DIF_FA) DIFAUX_FB=MAXVAL(DIF_FB) DIFAUX_FC=MAXVAL(DIF_FC) IF(DIFAUX_FA<=tol.AND.DIFAUX_FB<=tol.AND.DIFAU X_FC <= tol) THEN conver=1 ! PRINT*,'CONVERGE EL SISTEMA' WRITE(70,52)ite 52 FORMAT(10x,'Numero de Iteraciones =',I2//) ELSE conver=0 END IF END IF END SUBROUTINE CONVERGENCIA.

Con la convergencia cumplida se sale del ciclo al que se entro antes del barrido regresivo ya que se tiene el vector de estado para el sistema con este se calculan los flujos de potencia mediante.

CALL CALCULO_DE_FLUJOS

Subrutina en la que se realizan los cálculos normales para obtener los flujos de potencia usando el vector de estado y los parámetros de las Con esto termina algoritmo líneas. el computacional de EERD, posteriormente el programa te da la opción para realizar localización óptima de mediciones con el conjunto de estas que se levó de un principio. Al seleccionar que si se ingresa el número de submuestras aleatorias que se desean obtener, la selección se hace mediante; CALL

MUESTRAS_ALEATORIAS(NoMUESTRAS)

SUBROUTINE MUESTRAS_ALEATORIAS (NoMUESTRAS) USE DATOS_DE_MEDICIONES USE DATOS DE CARGAS USE DATOS_DE_LA_RED IMPLICIT NONE ::NoMUESTRAS INTEGER INTEGER, ALLOCATABLE :: VECT_MVaux REAL, ALLOCATABLE ::VECT_MF(:) INTEGER, dimension(NoMUESTRAS):: VA MVOLTAJEaux, VA_MFLUJOaux, VA_MINYECCIONaux REAL,ALLOCATABLE::VECT_MVOLTAJE(:),VECT_MF LUJO(:), VECT_MINYECCION(:), VECT_F_qm(:), VECT_T OTAL(:) INTEGER, ALLOCATABLE :: VECT_MINYECCIONaux(:) DEALLOCATE(nodomedvolt,MedVolt,VarMVolt,ZMVOLT, MTZVarMVolt) DEALLOCATE(NOmedicion,pm,qm,PFLUJO,QFLUJO,FPpq ,VarMF,ZMFP,MTZVarMFP) DEALLOCATE(nodocarga,pload,qload,Sload,Saux) NOcargasaux=NOcargas NOmedMagVoltaux=NOmedMagVolt NOmedFluPotaux=NOmedFluPot DO K=1,NoMUESTRAS print*.'&&&&&&&&&& CALL RANDOM_SEED () CALL RANDOM_NUMBER(NOmedMagVoltaux) VA_MVOLTAJE(K)=NINT(NOmedMagVoltaux*((NOmedM agVolt-1)+1)) !VARIABLE ALEATORIA DEL NUMERO DE MEDICIONES DE VOLTAJE CALL RANDOM NUMBER(NOmedFluPotaux) VA_MFLUJO(K)=NINT(NOmedFluPotaux*((NOmedFluPot-

VARIABLE ALEATORIA DEL NUMERO DE

MEDICIONES DE FLUJO DE POTENCIA

1)+1))

CALL RANDOM_NUMBER(NOcargasaux) VA MCARGA(K)=NINT(NOcargasaux*((NOcargas-1)+1)) **VARIABLE** ALEATORIA DEL NUMERO DE MEDICIONES DE INYECCION DE POTENCIA NUMA_MT=VA_MFLUJO(K)+VA_MCARGA(K) !PRINT*,'SUMA VALORES DE ALEATORIOS=',NUMA MT IF(NUMA_MT.LT. (NOnodos+1))THEN !NOele+1)THEN goto 7 END IF **!%% BUSCO EL VECTOR ALEATORIO DE MEDICIONES** VA MVOLTAJEaux(K)=VA MVOLTAJE(K) ALLOCATE(VECT_MVOLTAJE(VA_MVOLTAJEaux(K))) IF(VA MVOLTAJEaux(K).EO.0)THEN PRINT*, 'CERO MEDICIONES DE VOLTAJE' END IF IF(VA_MVOLTAJEaux(K).NE.1.AND.VA_MVOLTAJEaux( K).NE.0)THEN 12 CALL RANDOM_SEED () CALL RANDOM NUMBER(VECT MVOLTAJE) VECT_MVOLTAJE=NINT(VECT_MVOLTAJE*((NOmedM agVolt-1)+1)) 11 do i=VA_MVOLTAJEaux(K),1,-1 x=VECT_MVOLTAJE(i) POS=i IF(x.EQ.0)THEN END IF GOTO 12 do j=1,VA MVOLTAJEaux(K) if(POS.NE.j)then if(x.EQ.VECT_MVOLTAJE(j))then CALL RANDOM_SEED () CALL RANDOM_NUMBER(VECT_MVOLTAJE) VECT_MVOLTAJE=NINT(VECT_MVOLTAJE*((NOmedM agVolt-1)+1)) end if end if end do end do ELSE CALL RANDOM_SEED () CALL RANDOM_NUMBER(VECT_MVOLTAJE) VECT_MVOLTAJE=NINT(VECT_MVOLTAJE*((NOmedM agVolt-1)+1)) END IF !%%%%%%%%% BUSCO EL VECTOR ALEATORIO DE VA MFLUJOaux(K)=VA MFLUJO(K) ALLOCATE(VECT_MFLUJO(VA_MFLUJOaux(K))) ALLOCATE(VECT_F_qm(VA_MFLUJOaux(K))) IF(VA_MFLUJOaux(K).EQ.0)THEN PRINT*, 'CERO MEDICIONES DE FLUJO' END IF IF(VA MFLUJOaux(K).EO.1)THEN PRINT*, 'SOLO UNA MEDICION DE FLUJO' END IF IF(VA_MFLUJOaux(K).NE.1.AND.VA_MFLUJOaux(K).NE. 0)THEN 13 CALL RANDOM_SEED () CALL RANDOM NUMBER(VECT MFLUJO) VECT_MFLUJO=NINT(VECT_MFLUJO*((NOmedFluPot-1)+1)) 14 DO i=VA_MFLUJOaux(K),1,-1 x=VECT MFLUJO(i) POS=i IF(x.EQ.0)THEN GOTO 13 END IF

DO j=1,VA_MFLUJOaux(K) IF(POS.NE.j)THEN IF(x.EQ.VECT_MFLUJO(j))THEN CALL RANDOM_SEED () CALL RANDOM_NUMBER(VECT_MFLUJO) VECT_MFLUJO=NINT(VECT_MFLUJO*((NOmedFluPot-1)+1)) GOTO 14 END IF END IF END DO END DO ELSE CALL RANDOM SEED () CALL RANDOM NUMBER(VECT MFLUJO) VECT_MFLUJO=NINT(VECT_MFLUJO*((NOmedFluPot-1)+1)) END IF !%%%%%%% BUSCO EL VECTOR ALEATORIO DE MEDICIONES DE INYECCION DE POTENCIA %%%%% VA MINYECCIONaux(K)=VA MCARGA(K) ALLOCATE(VECT_MINYECCION(VA_MINYECCIONaux (K))) IF(VA_MINYECCIONaux(K).EQ.0)THEN PRINT*, 'CERO MEDICIONES DE INYECCION' END IF IF(VA_MINYECCIONaux(K).EQ.1)THEN PRINT*, 'SOLO UNA MEDICION DE INYECCION' END IF IF(VA_MINYECCIONaux(K).NE.1.AND.VA_MINYECCIO Naux(K).NE.0)THEN 15 CALL RANDOM_SEED () RANDOM_NUMBER(VECT_MINYECCION) CALL VECT_MINYECCION=NINT(VECT_MINYECCION*((NOc argas-1)+1))16 DO i=VA_MINYECCIONaux(K),1,-1 x=VECT_MINYECCION(i) POS=i IF(x.EQ.0)THEN GOTO 15 END IF DO j=1,VA_MINYECCIONaux(K) IF(POS.NE.j)THEN IF(x.EQ.VECT_MINYECCION(j))THEN 19 CALL RANDOM_SEED () CALL RANDOM_NUMBER(VECT_MINYECCION) VECT_MINYECCION=NINT(VECT_MINYECCION*((NOc argas-1)+1))GOTO 16 END IF END IF END DO END DO ELSE CALL RANDOM_SEED () CALL RANDOM NUMBER(VECT MINYECCION) VECT_MINYECCION=NINT(VECT_MINYECCION*((NOc argas-1)+1))END IF Cuando se tienen las submuestras de mediciones

se llama a ; CALL LOCALIZACION_OPTIMA(NoMUESTRAS) Donde cada conjunto de mediciones aleatorio se aplica nuevamente EERD como se muestra a continuación.

SUBROUTINE LOCALIZACION OPTIMA(NoMUESTRAS) USE DATOS_DE_MEDICIONES USE DATOS_DE_CARGAS USE DATOS_DE_LA_RED USE VOLTAJES_AUX USE NIVELES_NONODOS_POSI **USE** Sequivalente USE MATRIZ_Zabc USE VARIABLES_LOC_OPT IMPLICIT NONE ::NoMUESTRAS INTEGER ALLOCATE(VECT_NORMA_FA(NoMUESTRAS)) ALLOCATE(VECT NORMA FB(NoMUESTRAS)) ALLOCATE(VECT_NORMA_FC(NoMUESTRAS))

CALL VOLTAJES ite=1 conver=0 DO WHILE(ite .LE. 15.AND.conver.EQ.0) CALL BARRIDO_REGRESIVO CALL BARRIDO_PROGRESIVO CALL CONVERGENCIA(ite, conver) ite=ite+1 END DO CALL FLUJOS_DE_MUESTRAS CALLCALCULO_DE_LA_NORMA(NORMA_FA,NORMA _FB,NORMA_FC) VECT_NORMA_FA(k)=NORMA_FA VECT_NORMA_FB(k)=NORMA_FB VECT_NORMA_FC(k)=NORMA_FC DEALLOCATE(FLUJOS_MUESTRA) END DO

!%%ENCUENTRO LA NORMA MINIMA %%%%%%

NRM_MINIMA_FA=MINVAL(VECT_NORMA_FA) NRM_MINIMA_FB=MINVAL(VECT_NORMA_FB NRM_MINIMA_FC=MINVAL(VECT_NORMA_FC)

POS_NRM_MINIMA_FA=MINLOC(VECT_NORMA_FA)

POS_NRM_MINIMA_FB=MINLOC(VECT_NORMA_FB)

POS_NRM_MINIMA_FC=MINLOC(VECT_NORMA_FC)

1%% ENCUENTRO LA NORMA MINIMA DE LAS TRES

NRM_MINIMA=MIN(NRM_MINIMA_FA,NRM_MINIMA_FB,NRM_MINIMA_FC)

WRITE(70,58)NRM_MINIMA_FA,POS_NRM_MINIMA_FA

58 FORMAT(/10x,'NORMA MINIMA ENCONTRADA PARA LA FASE "A" =',1x,F9.5,5x,'CORRESPONDE A LA MUESTRA NUMERO =',1x,I2)

WRITE(70,59)NRM_MINIMA_FB,POS_NRM_MINIMA_F B

59 FORMAT(/10x,'NORMA MINIMA ENCONTRADA PARA LA FASE "B" =',1x,F9.5,5x,'CORRESPONDE A LA MUESTRA NUMERO =',1x,I2)

WRITE(70,60)NRM_MINIMA_FC,POS_NRM_MINIMA_FC

60 FORMAT(/10x,'NORMA MINIMA ENCONTRADA PARA LA FASE "C" =',1x,F9.5,5x,'CORRESPONDE A LA MUESTRA NUMERO =',1x,I2)

SUBROUTINE CALCULO_DE_LA_NORMA(NORMA_FA,NORMA_FB,N ORMA_FC) USE VARIABLES_LOC_OPT IMPLICIT NONE INTEGER ::ele REAL*8 ::SUMA_FA_P,SUMA_FA_Q,NORMA_FA REAL*8 ::SUMA_FB_P,SUMA_FB_Q,NORMA_FB REAL*8 ::SUMA_FC_P,SUMA_FC_Q,NORMA_FC

ALLOCATE(RESIDUOS_FA_P(NOele),RESIDUOS_FA_Q(NOele),RAUX_FA_P(NOele), RAUX_FA_Q(NOele))

ALLOCATE(RESIDUOS_FB_P(NOele),RESIDUOS_FB_Q(NOele),RAUX_FB_P(NOele), RAUX_FB_Q(NOele))

ALLOCATE(RESIDUOS_FC_P(NOele),RESIDUOS_FC_Q(NOele),RAUX_FC_P(NOele), RAUX_FC_Q(NOele))

RESIDUOS_FA_P=0 RESIDUOS_FA_Q=0 RAUX_FA_P=0 RAUX_FA_Q=0

RESIDUOS_FB_P=0 RESIDUOS_FB_Q=0 RAUX_FB_P=0 RAUX_FB_Q=0

RESIDUOS_FC_P=0 RESIDUOS_FC_Q=0 RAUX_FC_P=0 RAUX_FC_Q=0 DO ele=1,NOele

!%%%% FASE "A" %%%%%%%%%%

RESIDUOS_FA_P(ele)=REAL(FLUJOS_BASE(2,ele))-REAL(FLUJOS_MUESTRA(2,ele))

RESIDUOS_FA_Q(ele)=IMAG(FLUJOS_BASE(2,ele))-IMAG(FLUJOS_MUESTRA(2,ele)) RAUX_FA_P(ele)=RESIDUOS_FA_P(ele)**2 RAUX_FA_Q(ele)=RESIDUOS_FA_Q(ele)**2

!%%%% FASE "B" %%%%%%%%%%

RESIDUOS_FB_P(ele)=REAL(FLUJOS_BASE(3,ele))-REAL(FLUJOS_MUESTRA(3,ele))

!%%%% FASE "C" %%%%%%%%%%

RESIDUOS_FC_P(ele)=REAL(FLUJOS_BASE(4,ele))-REAL(FLUJOS_MUESTRA(4,ele))

END DO

SUMA_FA_P=SUM(RAUX_FA_P) SUMA_FA_Q=SUM(RAUX_FA_Q)

SUMA_FB_P=SUM(RAUX_FB_P) SUMA_FB_Q=SUM(RAUX_FB_Q)

SUMA_FC_P=SUM(RAUX_FC_P) SUMA_FC_Q=SUM(RAUX_FC_Q)

!%%%%%%% CALCULO LA NORMA PARA LA FASE "A" %%%% NORMA_FA=SQRT((SUMA_FA_P+SUMA_FA_Q)) !%%%%%%% CALCULO LA NORMA PARA LA FASE "B" %%%% NORMA_FB=SQRT((SUMA_FB_P+SUMA_FB_Q)) !%%%%%% CALCULO LA NORMA PARA LA FASE "C" %%%% NORMA_FC=SQRT((SUMA_FC_P+SUMA_FC_Q))

DEALLOCATE(RESIDUOS_FA_P,RESIDUOS_FA_Q,RAU X_FA_P,RAUX_FA_Q) DEALLOCATE(RESIDUOS_FB_P,RESIDUOS_FB_Q,RAU X_FB_P,RAUX_FB_Q) DEALLOCATE(RESIDUOS_FC_P,RESIDUOS_FC_Q,RAU X_FC_P,RAUX_FC_Q) END SUBROUTINE CALCULO_DE_LA_NORMA

Las últimas partes de códigos muestran como se calcula la norma en las diferentes muestras de mediciones que se generaron, y se identifica cual es la mínima para llegar al resultado en cada subrutina se mandaba a escribir los datos que formarían nuestro archivo de salida. Por lo que al final solo es salir del programa computacional.

## **D.3 Descripción de los Archivos de Datos.**

El archivo de datos que contiene los parámetros de las líneas se llena de la siguiente manera:

```
11-----indica el número de nodos.
10-----indica el número de elementos.
1 1 2-----número de elemento, nodo p, nodo q.
3-----número de fases
0.378787----longitud del alimentador en millas.
0.3465 1.0179----impedancias Z(1,1)
0.1560 0.5017----- Z(1,2)
0.1580 0.4236----- Z(1,3)
0.3375 1.0478----- Z(2,2)
0.1535 0.3849----- Z(2,3)
0.3414 1.0348----- Z(3,3)
223
2
0.0946969
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
1.3294 1.3471
0.2066 0.4591
1.3238 1.3569
324
3
0.378787
0.3465 1.0179
0.1560 0.5017
0.1580 0.4236
0.3375 1.0478
0.1535 0.3849
0.3414 1.0348
425
3
0.0946969
0.7526 1.1814
0.1580 0.4236
0.1560 0.5017
0.7475 1.1983
0.1535 0.3849
```

Estos son algunos elementos que forman el archivo de datos para el sistema de prueba de 11 nodos, ejemplificando la formación de este archivo.

El archivo para mediciones se forma como a continuación se indica.

4 3 -----# de medi. de votaje, # de medi. de flujo 1----nodo medido, voltaje. 2401.77 0.0001-----medición fase "a", varianza 2401.77 0.0001-----medición fase "b", varianza 2401.77 0.0001-----medición fase "c", varianza 2 2338.754 0.0001 2302.889 0.0001 2308.999 0.0001 5 2331.435 0.0001 2297.961 0.0001 2302.400 0.0001 10 0.0 0.0 0.0 0.0 2242.029 0.0001 1 1 2----# de medición de flujo, nodo p, nodo q. 755610 520620 0.0001 Fase "a" flujoPpq, flujo Q_{pq}, varianza 986280 684490 0.0001 Fase "b" flujoPpg, flujo Q_{pq}, varianza 962470 657520 0.0001 Fase "c" flujoPpq, flujo Q_{pq}, varianza 223 0.0 0.0 0.0001 407130 262800 0.0001 160120 128940 0.0001 324 380680 272190 0.0001 214790 141440 0.0001 418170 231720 0.0001 425 160360 110550 0.0001 120180 90300 0.0001 120330 90277 0.000 Mediciones de invección de potencia 2--- número de invecciones 2 ---- nodo medido 201000 115000 0.0001--- invección fase "a", P2, Q₂, varinza 225500 129000 0.0001--- inyección fase "b", P2,  $O_2$ , varinza 251000 144000 0.0001--- inyección fase "c", P2,  $Q_2$ , varinza 3 0 0 0.000 170000 125000 0.0001 80000 68000 0.0001

Esta es la manera de estructurar los archivos de datos que se leen en el programa de EERD.